Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Microbiome ; 9(1): 24, 2021 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-33482922

RESUMEN

BACKGROUND: Freshwater ecosystems are inhabited by members of cosmopolitan bacterioplankton lineages despite the disconnected nature of these habitats. The lineages are delineated based on > 97% 16S rRNA gene sequence similarity, but their intra-lineage microdiversity and phylogeography, which are key to understanding the eco-evolutional processes behind their ubiquity, remain unresolved. Here, we applied long-read amplicon sequencing targeting nearly full-length 16S rRNA genes and the adjacent ribosomal internal transcribed spacer sequences to reveal the intra-lineage diversities of pelagic bacterioplankton assemblages in 11 deep freshwater lakes in Japan and Europe. RESULTS: Our single nucleotide-resolved analysis, which was validated using shotgun metagenomic sequencing, uncovered 7-101 amplicon sequence variants for each of the 11 predominant bacterial lineages and demonstrated sympatric, allopatric, and temporal microdiversities that could not be resolved through conventional approaches. Clusters of samples with similar intra-lineage population compositions were identified, which consistently supported genetic isolation between Japan and Europe. At a regional scale (up to hundreds of kilometers), dispersal between lakes was unlikely to be a limiting factor, and environmental factors or genetic drift were potential determinants of population composition. The extent of microdiversification varied among lineages, suggesting that highly diversified lineages (e.g., Iluma-A2 and acI-A1) achieve their ubiquity by containing a consortium of genotypes specific to each habitat, while less diversified lineages (e.g., CL500-11) may be ubiquitous due to a small number of widespread genotypes. The lowest extent of intra-lineage diversification was observed among the dominant hypolimnion-specific lineage (CL500-11), suggesting that their dispersal among lakes is not limited despite the hypolimnion being a more isolated habitat than the epilimnion. CONCLUSIONS: Our novel approach complemented the limited resolution of short-read amplicon sequencing and limited sensitivity of the metagenome assembly-based approach, and highlighted the complex ecological processes underlying the ubiquity of freshwater bacterioplankton lineages. To fully exploit the performance of the method, its relatively low read throughput is the major bottleneck to be overcome in the future. Video abstract.


Asunto(s)
Biodiversidad , Agua Dulce , Filogeografía , Plancton/genética , Plancton/aislamiento & purificación , Análisis de Secuencia de ADN/métodos , Organismos Acuáticos/clasificación , Organismos Acuáticos/genética , Organismos Acuáticos/aislamiento & purificación , Europa (Continente) , Japón , Filogenia , Plancton/clasificación , ARN Ribosómico 16S/genética
2.
Front Microbiol ; 10: 2375, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31681232

RESUMEN

Kinetoplastid flagellates are generally abundant in the deep sea and recently they were even found to be dominant in the hypolimnion of a deep freshwater lake. Therefore, to understand the distribution of kinetoplastids in deep freshwater lakes, we have collected vertical samples from five lakes in Japan. The abundance of kinetoplastids was enumerated by Catalyzed Reporter Deposition-Fluorescence in situ Hybridization, and the diversity was determined by 18S amplicon sequencing using universal eukaryote and kinetoplastid-specific primers. Kinetoplastids were abundant in the deep waters of all the lakes, contributing up to 53.6% of total nanoeukaryotes. Despite this significant contribution, kinetoplastids remain undetected by amplicon sequencing using universal primers that are widely used in eukaryotic diversity studies. However, they were detected with specific primers, and the communities were characterized by both ubiquitous and lake-specific unique OTUs. Oligotyping of a ubiquitous and dominant OTU revealed the presence of lake-specific sequence types (oligotypes). Remarkably, we also detected diplonemids (a sister group of kinetoplastids and considered to be specific in the marine habitat) using kinetoplastid-specific primers, showing their presence in freshwaters. Underestimation of kinetoplastids and diplonemids using universal primers indicates that euglenozoan flagellates are overlooked in diversity studies worldwide. The present study highlighted the importance of kinetoplastids in the hypolimnion of deep lakes, thereby indicating their role in material cycling in deep waters.

3.
Appl Environ Microbiol ; 83(16)2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28600316

RESUMEN

We developed an in vitro enzyme system to produce myo-inositol from starch. Four enzymes were used, maltodextrin phosphorylase (MalP), phosphoglucomutase (PGM), myo-inositol-3-phosphate synthase (MIPS), and inositol monophosphatase (IMPase). The enzymes were thermostable: MalP and PGM from the hyperthermophilic archaeon Thermococcus kodakarensis, MIPS from the hyperthermophilic archaeon Archaeoglobus fulgidus, and IMPase from the hyperthermophilic bacterium Thermotoga maritima The enzymes were individually produced in Escherichia coli and partially purified by subjecting cell extracts to heat treatment and removing denatured proteins. The four enzyme samples were incubated at 90°C with amylose, phosphate, and NAD+, resulting in the production of myo-inositol with a yield of over 90% at 2 h. The effects of varying the concentrations of reaction components were examined. When the system volume was increased and NAD+ was added every 2 h, we observed the production of 2.9 g myo-inositol from 2.9 g amylose after 7 h, achieving gram-scale production with a molar conversion of approximately 96%. We further integrated the pullulanase from T. maritima into the system and observed myo-inositol production from soluble starch and raw potato with yields of 73% and 57 to 61%, respectively.IMPORTANCEmyo-Inositol is an important nutrient for human health and provides a wide variety of benefits as a dietary supplement. This study demonstrates an alternative method to produce myo-inositol from starch with an in vitro enzyme system using thermostable maltodextrin phosphorylase (MalP), phosphoglucomutase (PGM), myo-inositol-3-phosphate synthase, and myo-inositol monophosphatase. By utilizing MalP and PGM to generate glucose 6-phosphate, we can avoid the addition of phosphate donors such as ATP, the use of which would not be practical for scaled-up production of myo-inositol. myo-Inositol was produced from amylose on the gram scale with yields exceeding 90%. Conversion rates were also high, producing over 2 g of myo-inositol within 4 h in a 200-ml reaction mixture. By adding a thermostable pullulanase, we produced myo-inositol from raw potato with yields of 57 to 61% (wt/wt). The system developed here should provide an attractive alternative to conventional methods that rely on extraction or microbial production of myo-inositol.


Asunto(s)
Proteínas Arqueales/química , Archaeoglobus fulgidus/enzimología , Inositol/química , Liasas Intramoleculares/química , Monoéster Fosfórico Hidrolasas/química , Almidón/química , Thermococcus/enzimología , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Estabilidad de Enzimas , Inositol/metabolismo , Liasas Intramoleculares/genética , Liasas Intramoleculares/metabolismo , NAD/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Almidón/metabolismo
4.
ISME J ; 11(10): 2279-2293, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28585941

RESUMEN

The oxygenated hypolimnion accounts for a volumetrically significant part of the global freshwater systems. Previous studies have proposed the presence of hypolimnion-specific bacterioplankton lineages that are distinct from those inhabiting the epilimnion. To date, however, no consensus exists regarding their ubiquity and abundance, which is necessary to evaluate their ecological importance. The present study investigated the bacterioplankton community in the oxygenated hypolimnia of 10 deep freshwater lakes. Despite the broad geochemical characteristics of the lakes, 16S rRNA gene sequencing demonstrated that the communities in the oxygenated hypolimnia were distinct from those in the epilimnia and identified several predominant lineages inhabiting multiple lakes. Catalyzed reporter deposition fluorescence in situ hybridization revealed that abundant hypolimnion-specific lineages, CL500-11 (Chloroflexi), CL500-3, CL500-37, CL500-15 (Planctomycetes) and Marine Group I (Thaumarchaeota), together accounted for 1.5-32.9% of all bacterioplankton in the hypolimnion of the lakes. Furthermore, an analysis of single-nucleotide variation in the partial 16S rRNA gene sequence (oligotyping) suggested the presence of different sub-populations between lakes and water layers among the lineages occurring in the entire water layer (for example, acI-B1 and acI-A7). Collectively, these results provide the first comprehensive overview of the bacterioplankton community in the oxygenated hypolimnion of deep freshwater lakes.


Asunto(s)
Archaea/aislamiento & purificación , Bacterias/aislamiento & purificación , Lagos/microbiología , Oxígeno/análisis , Plancton/aislamiento & purificación , Archaea/clasificación , Archaea/genética , Archaea/metabolismo , Bacterias/clasificación , Ecosistema , Hibridación Fluorescente in Situ , Lagos/análisis , Oxígeno/metabolismo , Filogenia , Plancton/clasificación , Plancton/genética , Plancton/metabolismo , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
5.
Sci Rep ; 5: 8695, 2015 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-25733079

RESUMEN

Microbes are easily dispersed from one place to another, and immigrant microbes might contain information about the environments from which they came. We hypothesized that part of the microbial community on a flower's surface is transferred there from insect body surfaces and that this community can provide information to identify potential pollinator insects of that plant. We collected insect samples from the field, and found that an insect individual harbored an average of 12.2 × 10(5) microbial cells on its surface. A laboratory experiment showed that the microbial community composition on a flower surface changed after contact with an insect, suggesting that microbes are transferred from the insect to the flower. Comparison of the microbial fingerprint approach and direct visual observation under field condition suggested that the microbial community on a flower surface could to some extent indicate the structure of plant-pollinator interactions. In conclusion, species-specific insect microbial communities specific to insect species can be transferred from an insect body to a flower surface, and these microbes can serve as a "fingerprint" of the insect species, especially for large-bodied insects. Dispersal of microbes is a ubiquitous phenomenon that has unexpected and novel applications in many fields and disciplines.


Asunto(s)
Flores/microbiología , Microbiota , Polinización , Animales , Biodiversidad , Microbiología Ambiental , Insectos/microbiología , Metagenoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...