Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 11359, 2024 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-38762530

RESUMEN

Around one-third of the world's most carbon-rich ecosystems, mangrove forests, have already been destroyed in Thailand owing to coastal development and aquaculture. Improving these degraded areas through mangrove plantations can restore various coastal ecosystem services, including CO2 absorption and protection against wave action. This study examines the biomass of three coastal mangrove plantations (Avicennia alba) of different ages in Samut Prakarn province, Central Thailand. Our aim was to understand the forest biomass recovery during the early stages of development, particularly fine root biomass expansion. In the chronosequence of the mangrove plantations, woody biomass increased by 40% over four years from 79.7 ± 11.2 Mg C ha-1 to 111.7 ± 12.3 Mg C ha-1. Fine root biomass up to a depth of 100 cm was 4.47 ± 0.33 Mg C ha-1, 4.24 ± 0.63 Mg C ha-1, and 6.92 ± 0.32 Mg C ha-1 at 10, 12, and 14 year-old sites, respectively. Remarkably, the fine root biomass of 14-year-old site was significantly higher than those of the younger sites due to increase of the biomass at 15-30 cm and 30-50 cm depths. Our findings reveal that the biomass recovery in developing mangrove plantations exhibit rapid expansion of fine roots in deeper soil layers.


Asunto(s)
Biomasa , Raíces de Plantas , Humedales , Tailandia , Raíces de Plantas/crecimiento & desarrollo , Avicennia/crecimiento & desarrollo , Ecosistema , Conservación de los Recursos Naturales/métodos , Carbono/análisis , Carbono/metabolismo
2.
Environ Sci Technol ; 57(13): 5464-5473, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36947486

RESUMEN

Identifying drivers of the molecular composition of dissolved organic matter (DOM) is essential to understand the global carbon cycle, but an unambiguous interpretation of observed patterns is challenging due to the presence of confounding factors that affect the DOM composition. Here, we show, by combining ultrahigh-resolution mass spectrometry and nuclear magnetic resonance spectroscopy, that the DOM molecular composition varies considerably among 43 lakes in East Antarctica that are isolated from terrestrial inputs and human influence. The DOM composition in these lakes is primarily driven by differences in the degree of photodegradation, sulfurization, and pH. Remarkable molecular beta-diversity of DOM was found that rivals the dissimilarity between DOM of rivers and the deep ocean, which was driven by environmental dissimilarity rather than the spatial distance. Our results emphasize that the extensive molecular diversity of DOM can arise even in one of the most pristine and organic matter source-limited environments on Earth, but at the same time the DOM composition is predictable by environmental variables and the lakes' ecological history.


Asunto(s)
Materia Orgánica Disuelta , Lagos , Humanos , Lagos/química , Regiones Antárticas , Espectrometría de Masas , Ríos/química
3.
Sci Total Environ ; 801: 149682, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34418624

RESUMEN

Mangroves are increasingly recognized as an important component of regional and global carbon cycles especially for their high carbon storage capacity. Global estimation of mangrove soil organic carbon (SOC) storage requires detailed regional studies, but estimates of SOC data in deep soils are currently missing in many countries. Furthermore, little is explored on the molecular composition of mangrove SOC. Here, we assessed the SOC stock in a Trat mangrove forest (Thailand) by collecting deep soils (3.5 m) and analyzed the SOC composition for better understanding its potential sources and influencing factors. The Trat mangrove forest had four times higher SOC stock than has been considered for Thai mangrove forests, with the per-area SOC stock of nearly 1000 Mg C ha-1 which rivals that of Indo-Pacific mangrove forests. The SOC composition analyzed by C/N ratios and spectroscopic techniques differed by tree species and depth. Compositional data principal component analysis revealed that a biological factor (root abundance) had stronger influences than the soil texture (sand versus clay) on the abundance and composition of mangrove SOC. Although surface soil (~1 m) C density was largely controlled by the recent vegetation, deep soil C density reflected other historical processes. This study contributed to a refined estimate of Thailand mangrove SOC stock and revealed that factors influencing SOC abundance and composition differ by tree species and depth.


Asunto(s)
Carbono , Suelo , Carbono/análisis , Ecosistema , Bosques , Tailandia , Humedales
4.
Environ Sci Technol ; 55(14): 10175-10185, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34240854

RESUMEN

Accelerated glacier melt and runoff may lead to inputs of labile dissolved organic matter (DOM) to downstream ecosystems and stimulate the associated biogeochemical processes. However, still little is known about glacial DOM composition and its downstream processing before entering the ocean, although the function of DOM in food webs and ecosystems largely depends on its composition. Here, we employ a set of molecular and optical techniques (UV-vis absorption and fluorescence spectroscopy, 1H NMR, and ultrahigh-resolution mass spectrometry) to elucidate the composition of DOM in Antarctic glacial streams and its downstream change. Glacial DOM consisted largely of a mixture of small microbial-derived biomolecules. 1H NMR analysis of bulk water revealed that these small molecules were processed downstream into more complex, structurally unrecognizable molecules. The extent of processing varied between streams. By applying multivariate statistical (compositional data) analysis of the DOM molecular data, we identified molecular compounds that were tightly associated and moved in parallel in the glacial streams. Lakes in the middle of the flow paths enhanced water residence time and allowed for both more DOM processing and production. In conclusion, downstream processing of glacial DOM is substantial in Antarctica and affects the amounts of biologically labile substrates that enter the ocean.


Asunto(s)
Ecosistema , Compuestos Orgánicos , Regiones Antárticas , Cubierta de Hielo , Lagos , Espectrometría de Fluorescencia
5.
Microbes Environ ; 35(1)2020.
Artículo en Inglés | MEDLINE | ID: mdl-32009017

RESUMEN

The maximum ammonia oxidation potential (AOP) of a topsoil in Langhovde, East Antarctica was 22.1±2.4| |ng N g-1 dry soil h-1 (2| |mM ammonium, 10°C, n=3). This topsoil exhibited twin AOP peaks (1 and 2| |mM ammonium) at 10°C, but not at 20°C. Six and ten operational taxonomic units (OTUs) were identified for ammonia-oxidizing bacteria (AOB) and archaea (AOA) amoA, respectively. AOB were classified into Nitrosospira; the two dominant OTUs corresponded to the Mount Everest cluster. AOA were classified into three clusters; Nitrososphaera and Nitrosocosmicus were the two dominant clusters.


Asunto(s)
Amoníaco/metabolismo , Briófitas/microbiología , Líquenes/microbiología , Microbiología del Suelo , Regiones Antárticas , Archaea/clasificación , Archaea/genética , Archaea/aislamiento & purificación , Archaea/metabolismo , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Nitrificación , Oxidación-Reducción , Filogenia , Suelo/química , Temperatura
6.
Sci Rep ; 9(1): 16961, 2019 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-31740758

RESUMEN

The addition of biochar to the forest floor should facilitate efficient carbon sequestration. However, little is known about how biochar addition effects litter decomposition, which is related to carbon and nutrient dynamics in forest ecosystems. This study evaluated the effect of biochar addition on leaf litter decomposition in a forest ecosystem. To examine whether leaf litter decomposition was stimulated above and below biochar, litterbag experiments were carried out for about 3 years in a field site where biochar was added at the rate of 0, 5 and 10 t ha-¹ (C0, C5 and C10 plots) to the forest floor in a temperate oak forest, Japan. Biochar addition at C10 significantly enhanced litter decomposition below biochar for 2 years after treatment and above biochar for 1 year after treatment. Litter water content in biochar plots tended to increase under dry conditions. Biochar addition enhanced litter decomposition because of increased microbial activity with increased moisture content and accelerated the decomposition progress rather than changing the decomposition pattern. However, the carbon emission through changing leaf litter decomposition was small when compared with the carbon addition by biochar, indicating that biochar could be an effective material for carbon sequestration in forest ecosystems.

7.
Water Res ; 163: 114901, 2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-31362208

RESUMEN

This study characterized dissolved organic matter (DOM) obtained from 47 lakes and 2 streams on ice-free areas at Lützow-Holm Bay and Amundsen Bay in East Antarctica (n = 74), where few biogeochemical studies have been historically conducted. Samples were analyzed for basic water chemistry and by resin fractionation, UV-vis spectroscopy, and excitation emission matrix spectroscopy combined with parallel factor analysis (EEM-PARAFAC). Salinity of the samples ranged very broadly from fresh to hypersaline as a result of evaporative concentration. There was a clear positive correlation between log-salinity and the spectral slopes of DOM (S275-295), an indicator of photodegradation. Thus, we interpreted the correlation as a progression of photodegradation by prolonged water retention time. Of the identified seven PARAFAC components, three ubiquitous humic-like components decreased as photodegradation progressed, while a photorefractory UVC humic-like component increased its relative abundance. A non-humic component, traditionally defined as Peak N, did not show a trend depending on photodegradation, and its level was high in nutrient-rich lakes, presumably due to high in-situ production. We found robust correlations between the relative abundance of the ubiquitous humic-like components and that of the Peak N component in the bulk DOM irrespective of water types or ice-free areas. We proposed there were common processes that generated the ubiquitous humic-like components from the Peak N component in the Lützow-Holm Bay and Amundsen Bay lakes and streams, such as bacterial processing of primary production-derived DOM and photochemical transformation of microbial DOM.


Asunto(s)
Lagos , Ríos , Regiones Antárticas , Análisis Factorial , Sustancias Húmicas , Espectrometría de Fluorescencia
8.
Sci Rep ; 8(1): 4795, 2018 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-29556085

RESUMEN

Uptake of six particle-reactive and/or redox-sensitive radionuclides (210Pb, 234Th, 7Be, 59Fe, 237Np and 233Pa) by 14 humic acids (HAs) was investigated in artificial groundwater under mildly acidic conditions (pH~5.5). In HA-groundwater slurry, Pb, Be, Fe and Pa bound strongly to particulate HA (>0.45 µm), supporting their application as tracers of soil erosion. Th bound strongly to the colloidal HA (3 kDa-0.45 µm) and as such, would not be a good candidate as a tracer for monitoring soil erosion. HAs likely reduced the oxidized neptunyl form (Np(V)O4+) to Np(IV) based on its enhanced particle-reactivity and Np uptake by particulate HAs, partially retarding the movement of anthropogenic 237Np in field polluted environments. Particulate/colloidal carbonyl/O-aryl (likely through hydroquinone/quinone) functionalities in the HA correlated to Np and Pa uptake, but only particulate O-aryl functionalities was responsible for Fe uptake. The carboxylate- and carbonyl/O-aryl-containing organic functionalities in the HA correlated strongly with Th uptake. In contrast, no significant correlations between organic parameters and Pb or Be uptake implied their predominance of uniform surface adsorption onto particles. This study provides novel insight into the binding of six radionuclides with different organic functionalities of three size fractions, as well as its possible impact on their application in the soil-tracing research.

9.
Environ Sci Pollut Res Int ; 25(12): 11948-11957, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29450772

RESUMEN

The Selenga River Basin (Mongolia and Russia) has suffered from heavy metal contamination by placer gold mining and urban activities in recent decades. The objectives of this study were to provide the first distribution data of dissolved organic matter (DOM) and humic substances (HS) in this data-scarce region, and to investigate their association with dissolved and colloidal metals. Two sampling campaigns were conducted in August of 2013 and 2014. A constant proportion of HS (%HS; coefficient of variation of 2%) was observed from the headwater of Tuul River to the end of the delta before Lake Baikal, spanning > 1000 km in distance. The relationships were determined as [HS] = 0.643 × [DOM] (R2 = 0.996, P < 0.001), and this value (%HS = 64.3) is recommended as an input parameter for metal speciation modeling based on samples collected from the rivers. The DOM and metal (Al and Fe) concentrations in samples doubled through the Zaamar Goldfield mining area, but the influence was mitigated by mixing with the larger Orkhon River, which has better water quality. Metals were mainly present as colloids and had a strong positive correlation with DOM (Al r = 0.81, P < 0.01; Fe r = 0.61, P < 0.01), suggesting that DOM sustains colloidal Al and Fe in solution and they are co-transported in the Selenga River Basin. Land use changes affect water quality and metal speciation and therefore have major implications for the fate of metals.


Asunto(s)
Aluminio/química , Oro/química , Sustancias Húmicas/análisis , Hierro/química , Metales Pesados/análisis , Lagos , Metales Pesados/química , Minería , Mongolia , Ríos , Federación de Rusia , Calidad del Agua
10.
Environ Sci Technol ; 51(20): 11742-11751, 2017 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-28933160

RESUMEN

In order to examine the influence of the HA molecular composition on the partitioning of Pu, ten different kinds of humic acids (HAs) of contrasting chemical composition, collected and extracted from different soil types around the world were equilibrated with groundwater at low Pu concentrations (10-14 M). Under mildly acidic conditions (pH ∼ 5.5), 29 ± 24% of the HAs were released as colloidal organic matter (>3 kDa to <0.45 µm), yet this HA fraction accounted for a vast majority of the bound Pu, 76 ± 13% on average. In comparison, the particulate HA fraction bound only 8 ± 4% on average of the added Pu. The truly dissolved Pu fraction was typically <1%. Pu binding was strongly and positively correlated with the concentrations of organic nitrogen in both particulate (>0.45 µm) and colloidal phases in terms of activity percentage and partitioning coefficient values (logKd). Based on molecular characterization of the HAs by solid state 13C nuclear magnetic resonance (NMR) and elemental analysis, Pu binding was correlated to the concentration of carboxylate functionalities and nitrogen groups in the particulate and colloidal phases. The much greater tendency of Pu to bind to colloidal HAs than to particulate HA has implications on whether NOM acts as a Pu source or sink during natural or man-induced episodic flooding.


Asunto(s)
Sustancias Húmicas , Plutonio , Contaminantes Radiactivos del Suelo , Compuestos Orgánicos , Suelo
11.
Chemosphere ; 177: 51-55, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28282623

RESUMEN

Although mangrove forests are one of the most well-known soil organic carbon (SOC) sinks, the mechanism underlying SOC accumulation is relatively unknown. High net primary production (NPP) along with the typical bottom-heavy biomass allocation and low soil respiration (SR) have been considered to be responsible for SOC accumulation. However, an emerging paradigm postulates that SR is severely underestimated because of the leakage of dissolved inorganic carbon (DIC) in groundwater. Here we propose a simple yet unique mechanism for SOC accumulation in mangrove soils. We conducted sequential extraction of water extractable organic matter (WEOM) from mangrove soils using ultrapure water and artificial seawater, respectively. A sharp increase in humic substances (HS) concentration was observed only in the case of ultrapure water, along with a decline in salinity. Extracted WEOM was colloidal, and ≤70% of it re-precipitated by the addition of artificial seawater. These results strongly suggest that HS is selectively flocculated and maintained in the mangrove soils because of high salinity. Because sea salts are a characteristic of any mangrove forest, high salinity may be one of mechanisms underlying SOC accumulation in mangrove soils.


Asunto(s)
Biomasa , Carbono/química , Sustancias Húmicas/análisis , Salinidad , Agua de Mar/química , Contaminantes del Suelo/análisis , Humedales , Conductividad Eléctrica , Ríos , Sales (Química)/química , Suelo , Contaminantes Químicos del Agua/análisis
12.
Sci Rep ; 7: 42102, 2017 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-28186141

RESUMEN

Dissolved organic matter (DOM) strongly affects water quality within boreal forest ecosystems. However, how the quality of DOM itself changes spatially is not well understood. In this study, to examine how the diversity of DOM molecules varies in water moving through a boreal forest, the number of DOM molecules in different water samples, i.e., rainwater, throughfall, soil water, groundwater, and stream water was determined using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) in Norway spruce and Scots pine stands in eastern Finland during May and June 2010. The number of molecular compounds identified by FT-ICR MS (molecular diversity) ranged from 865 to 2,194, revealing large DOM molecular diversity in the water samples. Additionally, some of the molecular compounds were shared between different water samples. The DOM molecular diversity linearly correlated with the number of low-biodegradable molecules, such as, lignin-like molecules (lignins), but not with dissolved organic carbon concentration. The number of lignins shared between different sampling locations was larger than that of any other biomolecular class. Our results suggest that low-biodegradable molecules, especially lignins, regulate spatial variations in DOM molecular diversity in boreal forests.

13.
J Environ Radioact ; 153: 156-166, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26773510

RESUMEN

In order to assess how environmental factors are affecting the distribution and migration of radioiodine and plutonium that were emitted from the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident, we quantified iodine and (239,240)Pu concentration changes in soil samples with different land uses (urban, paddy, deciduous forest and coniferous forest), as well as iodine speciation in surface water and rainwater. Sampling locations were 53-63 km northwest of the FDNPP within a 75-km radius, in close proximity of each other. A ranking of the land uses by their surface soil (<4 cm) stable (127)I concentrations was coniferous forest > deciduous forest > urban > paddy, and (239,240)Pu concentrations ranked as deciduous forest > coniferous forest > paddy ≥ urban. Both were quite distinct from that of (134)Cs and (137)Cs: urban > coniferous forest > deciduous forest > paddy, indicating differences in their sources, deposition phases, and biogeochemical behavior in these soil systems. Although stable (127)I might not have fully equilibrated with Fukushima-derived (129)I, it likely still works as a proxy for the long-term fate of (129)I. Surficial soil (127)I content was well correlated to soil organic matter (SOM) content, regardless of land use type, suggesting that SOM might be an important factor affecting iodine biogeochemistry. Other soil chemical properties, such as Eh and pH, had strong correlations to soil (127)I content, but only within a given land use (e.g., within urban soils). Organic carbon (OC) concentrations and Eh were positively, and pH was negatively correlated to (127)I concentrations in surface water and rain samples. It is also noticeable that (127)I in the wet deposition was concentrated in both the deciduous and coniferous forest throughfall and stemfall water, respectively, comparing to the bulk rainwater. Further, both forest throughfall and stemflow water consisted exclusively of organo-iodine, suggesting all inorganic iodine in the original bulk deposition (∼ 28.6% of total iodine) have been completely converted to organo-iodine. Fukushima-derived (239,240)Pu was detectable at a distance ∼ 61 km away, NW of FDNPP. However, it is confined to the litter layer, even three years after the FDNPP accident-derived emissions. Plutonium-239,240 activities were significantly correlated with soil OC and nitrogen contents, indicating Pu may be associated with nitrogen-containing SOM, similar to what has been observed at other locations in the United States. Together, these finding suggest that natural organic matter (NOM) plays a key role in affecting the fate and transport of I and Pu and may warrant greater consideration for predicting long-term stewardship of contaminated areas and evaluating various remediation options in Japan.


Asunto(s)
Radioisótopos de Cesio/análisis , Sustancias Húmicas/análisis , Radioisótopos de Yodo/análisis , Plutonio/análisis , Monitoreo de Radiación , Contaminantes Radiactivos del Suelo/análisis , Bosques , Accidente Nuclear de Fukushima , Yodo/análisis , Japón
14.
Chemosphere ; 146: 129-32, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26714295

RESUMEN

A nonionic macroporous resin, Amberlite(®) XAD-8, or its substitute, Supelite™ DAX-8, is used when isolating or quantifying aquatic humic substances (AHS). However, the effect of salinity on the adsorption behavior of AHS onto the resin is yet to be confirmed, rendering the possibility of salinity-induced changes in the values of quantified amounts or characteristics of AHS obtained from a salty system. To verify the results of quantification and isolation of AHS using the resin in different salinity systems, the effect of salinity on such quantitative analyses of AHS has been examined. It has been concluded that the salinity effect is in general trivial and will not hinder comparison of results regardless of sample solution salinity.


Asunto(s)
Sustancias Húmicas/análisis , Resinas Sintéticas/química , Salinidad , Purificación del Agua , Adsorción
15.
Environ Sci Process Impacts ; 17(8): 1386-95, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26166584

RESUMEN

Humic substances (HSs) are ubiquitous in various aquatic systems and play important roles in many geochemical processes. There is increasing evidence of the presence of HSs in deep groundwater; nevertheless, their ion binding properties are largely unknown. In this study we investigated the physicochemical and ion-binding properties of humic and fulvic acids extracted from deep sedimentary groundwater. The binding isotherms of protons (H(+)) and copper (Cu(2+)) were measured by potentiometry and fitted to the NICA-Donnan model, and the obtained parameters were compared with the generic parameters of the model, which are the average parameters for HSs from surface environments. The deep groundwater HSs were different from surface HSs, having high aliphaticities, high sulfur contents, and small molecular sizes. Their amounts of acidic functional groups were comparable to or slightly larger than those of surface HSs; however, the magnitude of Cu(2+) binding to the deep groundwater HSs was smaller. The NICA-Donnan model attributed this to the binding of Cu(2+) to chemically homogeneous low affinity sites, which presumably consist of carboxylic groups, via mono-dentate coordination at relatively low pH. The binding mode tended to shift to multi-dentate coordination with carboxylic groups and more heterogeneous alcoholic/phenolic groups at higher pH. X-ray absorption spectroscopy also revealed that Cu(2+) binds to O/N containing functional groups and to a lesser extent S containing functional groups as its divalent from. This study shows the particularity of the deep groundwater HSs in terms of their physicochemical and ion-binding properties, compared with surface HSs.


Asunto(s)
Benzopiranos/análisis , Agua Subterránea/química , Sustancias Húmicas/análisis , Modelos Químicos , Contaminantes Químicos del Agua/análisis , Benzopiranos/química , Cobre , Concentración de Iones de Hidrógeno , Protones
16.
Anal Sci ; 28(10): 1017-20, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23060000

RESUMEN

Aquatic humic substances (AHSs) are major constituents of dissolved organic matter (DOM) in freshwater, where they perform a number of important ecological and geochemical functions, yet no method exists for quantifying all AHSs. We have developed a method for the quantitative analysis of AHSs based on their carbon concentration. Our approach includes: (1) the development of techniques for clear-water samples with low AHS concentrations, which normally complicate quantification; (2) avoiding carbon contamination in the laboratory; and (3) optimizing the AHS adsorption conditions.


Asunto(s)
Carbono/análisis , Técnicas de Química Analítica/métodos , Sustancias Húmicas/análisis , Agua/química , Adsorción
17.
J Chromatogr A ; 1218(37): 6448-53, 2011 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-21820122

RESUMEN

High performance size-exclusion chromatography (HPSEC) is useful for the molecular size separation of soil humic acids (HAs), but there is no method available for various HAs with different chemical properties. In this paper the authors propose a new preparative HPSEC method for various soil HAs. Three soil HAs with different chemical properties were fractionated by a Shodex OHpak SB-2004 HQ column with 10mM sodium phosphate buffer (pH 7.0)/acetonitrile (3:1, v/v) as an eluent. The HAs eluted within a reasonable column range time (12-25 min) without peak tailing. Preparative HPSEC chromatograms of these HAs indicated that non-size-exclusion effects were suppressed. The separated fractions were analyzed by HPSEC to determine their apparent molecular weights. These decreased sequentially from fraction 1 to fraction 10, suggesting that the HAs had been separated by their molecular size. The size-separated fractions of the soil HA were mixed to compare them with unfractionated HA. The analytical HPSEC chromatogram of the mixed HA was almost identical to that of the unfractionated HA. It appears that the HAs do not adsorb specifically to the column during preparative HPSEC. Our preparative HPSEC method allows for rapid and reproducible separation of various soil HAs by molecular size.


Asunto(s)
Cromatografía en Gel/métodos , Cromatografía Líquida de Alta Presión/métodos , Sustancias Húmicas/análisis , Peso Molecular , Reproducibilidad de los Resultados , Factores de Tiempo
18.
Radiat Prot Dosimetry ; 146(1-3): 322-5, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21515623

RESUMEN

This study reports carbon isotopic ratios (Δ(14)C and δ(13)C) of dissolved humic and fulvic acids in the Tokachi River system, northern Japan. These acids have a refractory feature and they represent the largest fraction of dissolved organic matter in aquatic environments. The acids were isolated using the XAD extraction method from river water samples collected at three sites (on the upper and lower Tokachi River, and from one of its tributaries) in June 2004 and 2005. δ(13)C values were -27.8 to -26.9 ‰ for humic and fulvic acids. On the other hand, the Δ(14)C values ranged from -247 to +26 ‰ and the average values were -170 ± 79 ‰ for humic acid and -44 ± 73 ‰ for fulvic acid. The difference was attributed to the residence time of fulvic acid in the watershed being shorter than that of humic acid. The large variation suggested that humic substances have a different pathway in each watershed environment.


Asunto(s)
Benzopiranos/análisis , Isótopos de Carbono/análisis , Monitoreo del Ambiente , Sustancias Húmicas/análisis , Ríos/química , Benzopiranos/aislamiento & purificación
19.
Water Res ; 44(13): 3837-46, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20569962

RESUMEN

Characteristics of aquatic fulvic acids (FAs) from 10 clear waters in Japan (around the temperate zone) were revealed by several analytical techniques-high performance size exclusion chromatography (HPSEC), elemental analysis, liquid-state (13)C NMR spectroscopy, isotopic analyses (delta(13)C and delta(15)N), and compared with those of International Humic Substances Society (IHSS) standard samples including FAs from brown waters (Suwannee, Pony, and Nordic FAs). Generally clear-water FAs were different from brown-water FAs in chemical properties. Weight-average molecular weights (Mw) of the clear-water FAs were similar to each other, whereas their elemental compositions and carbon species distribution were different. The clear-water FAs all exhibited a high proportion of alkyl carbons, which may be attributed to microbial activity. delta(13)C and delta(15)N values of the FAs indicated that there would be a huge gap between origin and chemical structure of clear-water FA. Results of the chemical structural analyses described above were not always linked to those of the isotopic analyses (delta(13)C and delta(15)N). Multivariate statistical analysis, i.e. cluster and principal component analysis was applied to reveal differences or similarities in a more objective manner. The FAs were always classified into two clear-water groups and one brown-water group. Aryl-C and O-Alkyl-C contents were important for the grouping. We speculate that the grouping might depend on the differences of aquatic microbial activity caused by the differences of residence time of water.


Asunto(s)
Benzopiranos/aislamiento & purificación , Ríos/química , Agua/química , Isótopos de Carbono , Cromatografía en Gel , Análisis por Conglomerados , Elementos Químicos , Japón , Espectroscopía de Resonancia Magnética , Análisis de Componente Principal
20.
J Biosci Bioeng ; 107(3): 296-300, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19269596

RESUMEN

Anthraquinones are widely present in plant kingdom, and clinically used as laxatives. Environmental contaminants, dioxins, develop various adverse effects through transformation of a cytosolic aryl hydrocarbon receptor (AhR). We investigated the effects of 18 anthraquinones and 7 of their structurally related compounds on transformation of the AhR estimated by its DNA-binding activity in the cell-free system. 1,4-Dihydroxyanthraquinone (quinizarin), 1,5-dihydroxyanthraquinone (anthrarufin), 1,8-dihydroxyanthraquinone (danthron), and 5-hydroxy-1,4-naphthoquinone (juglone) strongly suppressed DNA-binding activity of the AhR induced by 0.1 nM 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), with their IC(50) values around 1 muM. On the other hand, anthraquinone, 2,6-dihydroxyanthraquinone (anthraflavic acid), and 2-hydroxy-1,4-naphthalendione (lawsone) showed moderate effects. Quantitative structure-activity relationships analysis demonstrated that hydroxyl groups at C1 or C4 but not C3 position of anthraquinone structure are critical for the suppressive effects. In addition, all compounds except lawsone had no agonistic effect. The suppressive effects of anthraquinones in a cultured cell system were also confirmed. In human hepatoma HepG2 cells, chrysophanol, danthron, and rhein also suppressed the DNA-binding activity in a dose-dependent manner, although aloe-emodin showed a moderate effect. The findings of this study may be useful for the design of the novel antagonists of the AhR.


Asunto(s)
Antraquinonas/química , Proteínas de Unión al ADN/metabolismo , Dibenzodioxinas Policloradas/farmacología , Relación Estructura-Actividad Cuantitativa , Receptores de Hidrocarburo de Aril/metabolismo , Antraquinonas/metabolismo , Antraquinonas/farmacología , Línea Celular , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...