Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Biosci Microbiota Food Health ; 43(2): 110-119, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38562544

RESUMEN

How bifidobacteria colonize and survive in the intestine is not fully understood. The administration of bifidobacteria to conventional mice can be used to evaluate their ability to colonize the intestine in the presence of endogenous gut microbiota. However, human-derived bifidobacteria do not readily colonize the intestines of conventional mice, and although colonization by Bifidobacterium breve UCC2003 has been achieved, the viability of such populations requires improvement. Therefore, we aimed to establish a colonization system with human-derived bifidobacteria of high viability in conventional mice using Bifidobacterium longum subsp. longum 105-A. Lactose, raffinose, and 1-kestose were identified as the preferred carbohydrate sources for the growth of this strain in culture. The administration of B. longum 105-A to conventional BALB/c mice fed these carbohydrates showed that diets containing 6% (w/w) raffinose or 1-kestose facilitated colonization with >108 colony-forming units/g feces for 2 weeks. The population of this strain was more stable in the raffinose-fed group than in the 1-kestose-fed group. The ingestion of these prebiotics had a greater impact on the composition of the microbiota than the administration of B. longum 105-A. The ingestion of these prebiotics also increased the fecal concentrations of organic acids, which was indicative of greater intestinal fermentation. Collectively, we established a colonization system for B. longum 105-A with high viability in conventional mice by feeding the mice raffinose or 1-kestose. This system should be useful for elucidation of the mechanisms of colonization and survival of bifidobacteria in the intestines in the presence of the endogenous gut microbiota.

2.
Anal Chim Acta ; 1288: 342145, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38220280

RESUMEN

Short-chain fatty acid esters of hydroxy fatty acids (SFAHFAs) are a new class of endogenous lipids belonging to the fatty acid esters of the hydroxy fatty acid family. We previously uncovered their chemical structure and discussed their potential biological significance. We anticipate an increased need for SFAHFA measurements as markers of metabolic and inflammatory health. In this study, we synthesized sixty isomeric SFAHFAs by combining 12 hydroxy fatty acids (C16-C24) and five short-chain fatty acids (C2-C6) including a labelled internal standard. SFAHFA enrichment was achieved by solid-phase extraction and established a sensitive method for their quantitation by targeted LC-MS/MS. The method was applied to profile SFAHFAs in intestinal contents and fecal samples collected from rats fed a high-fat diet (HFD). The results demonstrated a significant decrease in SFAHFAs in the intestinal contents of the HFD group compared with the control group. The fecal time course (0-8 weeks) profile of SFAHFAs showed significant downregulation of acetic and propanoic acid esters in just 2 weeks after HFD administration. This study offers the first synthesis and quantitation method for SFAHFAs, demonstrating their potential use in elucidating SFAHFA sources, their role in various diseases, and potential biochemical signalling pathways.


Asunto(s)
Ésteres , Cromatografía Líquida con Espectrometría de Masas , Ratas , Animales , Cromatografía Liquida/métodos , Contenido Digestivo , Espectrometría de Masas en Tándem/métodos , Ácidos Grasos , Ácidos Grasos Volátiles
3.
Artículo en Inglés | MEDLINE | ID: mdl-37737068

RESUMEN

Obligately anaerobic, Gram-stain-positive, bacilli, strains 12BBH14T, 9CFEGH4 and 10CPCBH12, were isolated from faecal samples of healthy Japanese people. Strain 12BBH14T showed the highest 16S rRNA gene sequence similarity to Sellimonas monacensis Cla-CZ-80T (97.5 %) and 'Lachnoclostridium phocaeense' Marseille-P3177T (97.2 %). Strain 12BBH14T was also closely related to Eubacterium sp. c-25 with 99.7 % 16S rRNA gene sequence similarity. The 16S rRNA gene sequence analysis showed that strains 12BBH14T, 9CFEGH4 and 10CPCBH12 formed a monophyletic cluster with Eubacterium sp. c-25. Near this monophyletic cluster, S. monacensis Cla-CZ-80T and 'L. phocaeense' Marseille-P3177T formed a cluster and did not form a cluster with other Sellimonas species. The digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) values between strains 12BBH14T, 9CFEGH4, 10CPCBH12 and Eubacterium sp. c-25 were higher than the cut-off values of species demarcation (>88 % dDDH and >98 % ANI), indicating that these four strains are the same species. On the other hand, the dDDH and ANI values of these strains were lower than the cut-off values of species demarcation against other strains (<29 % dDDH and <76 % ANI). Moreover, the average amino acid identity values among these strains were higher than the genus boundary. These results indicate that the isolates should be considered to belong to a new genus of the family Lachnospiraceae. Based on the collected data, strains 12BBH14T, 9CFEGH4 and 10CPCBH12 represent a novel species of a novel genus, for which the name Claveliimonas bilis gen. nov., sp. nov. is proposed. The type strain of C. bilis is 12BBH14T (=JCM 35899T=DSM 115701T). Eubacterium sp. c-25 belongs to C. bilis. In addition, S. monacensis is transferred to the genus Claveliimonas as Claveliimonas monacensis comb. nov.


Asunto(s)
Bacterias , Ácidos Grasos , Humanos , ARN Ribosómico 16S/genética , Filogenia , Análisis de Secuencia de ADN , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Composición de Base , Ácidos Grasos/química , Heces , Nucleótidos , Ácido Desoxicólico
4.
Br J Nutr ; 127(11): 1621-1630, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-34256877

RESUMEN

Enterohepatic circulation of 12α-hydroxylated (12αOH) bile acid (BA) is enhanced depending on the energy intake in high-fat diet-fed rats. Such BA metabolism can be reproduced using a diet supplemented with cholic acid (CA), which also induces simple steatosis, without inflammation and fibrosis, accompanied by some other symptoms that are frequently observed in the condition of non-alcoholic fatty liver in rats. We investigated whether supplementation of the diet with raffinose (Raf) improves hepatic lipid accumulation induced by the CA-fed condition in rats. After acclimation to the AIN-93-based control diet, male Wistar rats were fed diets supplemented with a combination of Raf (30 g/kg diet) and/or CA (0·5 g/kg diet) for 4 weeks. Dietary Raf normalised hepatic TAG levels (two-way ANOVA P < 0·001 for CA, P = 0·02 for Raf and P = 0·004 for interaction) in the CA-supplemented diet-fed rats. Dietary Raf supplementation reduced hepatic 12αOH BA concentration (two-way ANOVA P < 0·001 for CA, P = 0·003 for Raf and P = 0·03 for interaction). The concentration of 12αOH BA was reduced in the aortic and portal plasma. Raf supplementation increased acetic acid concentration in the caecal contents (two-way ANOVA P = 0·001 as a main effect). Multiple regression analysis revealed that concentrations of aortic 12αOH BA and caecal acetic acid could serve as predictors of hepatic TAG concentration (R2 = 0·55, P < 0·001). However, Raf did not decrease the secondary 12αOH BA concentration in the caecal contents as well as the transaminase activity in the CA diet-fed rats. These results imply that dietary Raf normalises hepatic lipid accumulation via suppression of enterohepatic 12αOH BA circulation.


Asunto(s)
Ácidos y Sales Biliares , Dieta Alta en Grasa , Ratas , Masculino , Animales , Ácido Cólico/metabolismo , Ácido Cólico/farmacología , Ácidos y Sales Biliares/metabolismo , Rafinosa/metabolismo , Rafinosa/farmacología , Ratas Wistar , Lípidos , Circulación Enterohepática , Hígado/metabolismo
5.
Appl Environ Microbiol ; 88(2): e0143721, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-34731055

RESUMEN

Human milk oligosaccharides (HMOs), which are natural bifidogenic prebiotics, were recently commercialized to fortify formula milk. However, HMO assimilation phenotypes of bifidobacteria vary by species and strain, which has not been fully linked to strain genotype. We have recently shown that specialized uptake systems, particularly for the internalization of major HMOs (fucosyllactose [FL]), are associated with the formation of a Bifidobacterium-rich gut microbial community. Phylogenetic analysis revealed that FL transporters have diversified into two clades harboring four clusters within the Bifidobacterium genus, but the underpinning functional diversity associated with this divergence remains underexplored. In this study, we examined the HMO consumption phenotypes of two bifidobacterial species, Bifidobacterium catenulatum subsp. kashiwanohense and Bifidobacterium pseudocatenulatum, both of which possess FL-binding proteins that belong to phylogenetic clusters with unknown specificities. Growth assays, heterologous gene expression experiments, and HMO consumption analyses showed that the FL transporter type from B. catenulatum subsp. kashiwanohense JCM 15439T conferred a novel HMO uptake pattern that includes complex fucosylated HMOs (lacto-N-fucopentaose II and lacto-N-difucohexaose I/II). Further genomic landscape analyses of FL transporter-positive bifidobacterial strains revealed that the H-antigen- or Lewis antigen-specific fucosidase gene(s) and FL transporter specificities were largely aligned. These results suggest that bifidobacteria have acquired FL transporters along with the corresponding gene sets necessary to utilize the imported HMOs. Our results provide insight into the species- and strain-dependent adaptation strategies of bifidobacteria in HMO-rich environments. IMPORTANCE The gut of breastfed infants is generally dominated by health-promoting bifidobacteria. Human milk oligosaccharides (HMOs) from breast milk selectively promote the growth of specific taxa such as bifidobacteria, thus forming an HMO-mediated host-microbe symbiosis. While the coevolution of humans and bifidobacteria has been proposed, the underpinning adaptive strategies employed by bifidobacteria require further research. Here, we analyzed the divergence of the critical fucosyllactose (FL) HMO transporter within Bifidobacterium. We have shown that the diversification of the solute-binding proteins of the FL transporter led to uptake specificities of fucosylated sugars ranging from simple trisaccharides to complex hexasaccharides. This transporter and the congruent acquisition of the necessary intracellular enzymes allow bifidobacteria to consume different types of HMOs in a predictable and strain-dependent manner. These findings explain the adaptation and proliferation of bifidobacteria in the competitive and HMO-rich infant gut environment and enable accurate specificity annotation of transporters from metagenomic data.


Asunto(s)
Bifidobacterium , Leche Humana , Bifidobacterium/metabolismo , Humanos , Lactante , Metagenoma , Metagenómica , Leche Humana/metabolismo , Oligosacáridos/metabolismo , Filogenia
6.
Microorganisms ; 9(11)2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34835380

RESUMEN

The human gut houses bile acid 7α-dehydroxylating bacteria that produce secondary bile acids such as deoxycholic acid (DCA) from host-derived bile acids through enzymes encoded by the bai operon. While recent metagenomic studies suggest that these bacteria are highly diverse and abundant, very few DCA producers have been identified. Here, we investigated the physiology and determined the complete genome sequence of Eubacterium sp. c-25, a DCA producer that was isolated from human feces in the 1980s. Culture experiments showed a preference for neutral to slightly alkaline pH in both growth and DCA production. Genomic analyses revealed that c-25 is phylogenetically distinct from known DCA producers and possesses a multi-cluster arrangement of predicted bile-acid inducible (bai) genes that is considerably different from the typical bai operon structure. This arrangement is also found in other intestinal bacterial species, possibly indicative of unconfirmed 7α-dehydroxylation capabilities. Functionality of the predicted bai genes was supported by the induced expression of baiB, baiCD, and baiH in the presence of cholic acid substrate. Taken together, Eubacterium sp. c-25 is an atypical DCA producer with a novel bai gene cluster structure that may represent an unexplored genotype of DCA producers in the human gut.

7.
Gut Microbes ; 13(1): 1973835, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34553672

RESUMEN

Certain existing prebiotics meant to facilitate the growth of beneficial bacteria in the intestine also promote the growth of other prominent bacteria. Therefore, the growth-promoting effects of ß-galactosides on intestinal bacteria were analyzed. Galactosyl-ß1,4-l-rhamnose (Gal-ß1,4-Rha) selectively promoted the growth of Bifidobacterium. Bifidobacterium longum subsp. longum 105-A (JCM 31944) has multiple solute-binding proteins belonging to ATP-binding cassette transporters for sugars. Each strain in the library of 11 B. longum subsp. longum mutants, in which each gene of the solute-binding protein was disrupted, was cultured in a medium containing Gal-ß1,4-Rha as the sole carbon source, and only the BL105A_0502 gene-disruption mutant showed delayed and reduced growth compared to the wild-type strain. BL105A_0502 homolog is highly conserved in bifidobacteria. In a Gal-ß1,4-Rha-containing medium, Bifidobacterium longum subsp. infantis JCM 1222T, which possesses BLIJ_2090, a homologous protein to BL105A_0502, suppressed the growth of enteric pathogen Clostridioides difficile, whereas the BLIJ_2090 gene-disrupted mutant did not. In vivo, administration of B. infantis and Gal-ß1,4-Rha alleviated C. difficile infection-related weight loss in mice. We have successfully screened Gal-ß1,4-Rha as a next-generation prebiotic candidate that specifically promotes the growth of beneficial bacteria without promoting the growth of prominent bacteria and pathogens.


Asunto(s)
Bifidobacterium longum subspecies infantis/crecimiento & desarrollo , Bifidobacterium/crecimiento & desarrollo , Clostridioides difficile/crecimiento & desarrollo , Disacáridos/farmacología , Prebióticos/análisis , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Bifidobacterium/genética , Bifidobacterium longum subspecies infantis/genética , Microbioma Gastrointestinal/efectos de los fármacos , Humanos , Intestinos/microbiología , Masculino , Ratones , Ratones Endogámicos C57BL
8.
Biosci Microbiota Food Health ; 40(1): 80-83, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33520573

RESUMEN

Although bifidobacteria are already widely used as beneficial microbes with health-promoting effects, their amino acid utilization and metabolism are not yet fully understood. Knowledge about the metabolism of sulfur-containing amino acids in bifidobacteria is especially limited. In this study, we tested the methionine utilization ability of several bifidobacterial strains when it was the sole available sulfur source. Although bifidobacteria have long been predominantly considered to be cysteine auxotrophs, we showed that this is not necessarily the case.

9.
J Nutr ; 151(3): 523-530, 2021 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-33438034

RESUMEN

BACKGROUND: Primary 12α-hydroxylated bile acids (12αOH BAs) enhance intestinal iron uptake due to their ability ex vivo to chelate iron. However, no information is available on their role in vivo, especially in the liver. OBJECTIVES: To investigate the effects and mechanisms of primary 12αOH BAs on hepatic iron concentration in vivo. METHODS: Male Wistar King A Hokkaido male rats (WKAH/HkmSlc) rats aged 4-5 weeks were fed a control diet or a diet with cholic acid (CA; 0.5 g/kg diet), the primary 12αOH BA, for 2 weeks (Study 1) or 13 weeks (Study 2). In Study 3, rats fed the same diets were given drinking water either alone or containing vancomycin (200 mg/L) for 6 weeks. The variables measured included food intake (Studies 1-3), bile acid profiles (Studies 1 and 3), hepatic iron concentration (Studies 1-3), fecal iron excretion (Studies 1 and 2), iron-related liver gene expression (Studies 2 and 3), and plasma iron-related factors (Studies 2 and 3). RESULTS: In Study 1, CA feed reduced the hepatic iron concentration (-16%; P = 0.005) without changing food intake or fecal iron excretion. In Study 2, we found a significant increase in the aortic plasma concentration of lipocalin 2 (LCN2; +65%; P < 0.001), an iron-trafficking protein. In Study 3, we observed no effect of vancomycin treatment on the CA-induced reduction of hepatic iron concentration (-32%; P < 0.001), accompanied by increased plasma LCN2 concentration (+72%; P = 0.003), in the CA-fed rats despite a drastic reduction in the secondary 12αOH BA concentration (-94%; P < 0.001) in the aortic plasma. CONCLUSIONS: Primary 12αOH BAs reduced the hepatic iron concentration in rats. LCN2 may be responsible for the hepatic iron-lowering effect of primary 12αOH BAs by transporting iron out of the liver.


Asunto(s)
Ácidos y Sales Biliares/análisis , Ácido Cólico/administración & dosificación , Ácido Cólico/análisis , Hierro/metabolismo , Hígado/metabolismo , Animales , Ácido Cólico/sangre , Ingestión de Alimentos , Expresión Génica , Hierro/sangre , Lipocalina 2/sangre , Masculino , Ratas , Ratas Wistar , Reacción en Cadena en Tiempo Real de la Polimerasa , Vancomicina/administración & dosificación
10.
Metabolites ; 10(10)2020 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-33050007

RESUMEN

Branched fatty acid esters of hydroxy fatty acids (FAHFAs) are novel endogenous lipids with important physiological functions in mammals. We previously identified a new type of FAHFAs, named short-chain fatty acid esterified hydroxy fatty acids (SFAHFAs), with acetyl or propyl esters of hydroxy fatty acids of carbon chains, C ≥ 20. However, sensitive determination of SFAHFAs is still a challenge, due to their high structural similarity and low abundance in biological samples. This study employs one-step chemical derivatization following total lipid extraction using 2-dimethylaminoethylamine (DMED) for enhanced detection of SFAHFAs. The labeled extracts were subjected to ultrahigh performance liquid chromatography coupled to linear ion trap quadrupole-Orbitrap mass spectrometry (UHPLC/LTQ-Orbitrap MS). Our results demonstrated that the detection sensitivities of SFAHFAs increased after DMED labeling, and is highly helpful in discovering six additional novel SFAHFAs in the cecum and colon contents of WKAH/HKmSlc rats fed with normal and high-fat diet (HFD). The identified DMED labeled SFAHFAs were characterized by their detailed MS/MS analysis, and their plausible fragmentation patterns were proposed. The concentrations of SFAHFAs were significantly reduced in the cecum of HFD group compared to the control. Hence, the proposed method could be a promising tool to apply for the enhanced detection of SFAHFAs in various biological matrices, which in turn facilitate the understanding of their sources, and physiological functions of these novel lipids.

11.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1865(12): 158811, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32896622

RESUMEN

There is an increasing need to explore the mechanism of the progression of non-alcoholic fatty liver disease. Steroid metabolism is closely linked to hepatic steatosis and steroids are excreted as bile acids (BAs). Here, we demonstrated that feeding WKAH/HkmSlc inbred rats a diet supplemented with cholic acid (CA) at 0.5 g/kg for 13 weeks induced simple steatosis without obesity. Liver triglyceride and cholesterol levels were increased accompanied by mild elevation of aminotransferase activities. There were no signs of inflammation, insulin resistance, oxidative stress, or fibrosis. CA supplementation increased levels of CA and taurocholic acid (TCA) in enterohepatic circulation and deoxycholic acid (DCA) levels in cecum with an increased ratio of 12α-hydroxylated BAs to non-12α-hydroxylated BAs. Analyses of hepatic gene expression revealed no apparent feedback control of BA and cholesterol biosynthesis. CA feeding induced dysbiosis in cecal microbiota with enrichment of DCA producers, which underlines the increased cecal DCA levels. The mechanism of steatosis was increased expression of Srebp1 (positive regulator of liver lipogenesis) through activation of the liver X receptor by increased oxysterols in the CA-fed rats, especially 4ß-hydroxycholesterol (4ßOH) formed by upregulated expression of hepatic Cyp3a2, responsible for 4ßOH formation. Multiple regression analyses identified portal TCA and cecal DCA as positive predictors for liver 4ßOH levels. The possible mechanisms linking these predictors and upregulated expression of Cyp3a2 are discussed. Overall, our observations highlight the role of 12α-hydroxylated BAs in triggering liver lipogenesis and allow us to explore the mechanisms of hepatic steatosis onset, focusing on cholesterol and BA metabolism.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Disbiosis/metabolismo , Hidroxicolesteroles/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Animales , Ácidos Cólicos/metabolismo , Ácido Desoxicólico/metabolismo , Disbiosis/etiología , Hidroxilación , Masculino , Enfermedad del Hígado Graso no Alcohólico/etiología , Ratas , Ratas Wistar , Ácido Taurocólico/metabolismo
12.
J Nutr Biochem ; 83: 108412, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32534424

RESUMEN

High-fat (HF) diet induces hepatic steatosis that is a risk factor for noncommunicable diseases such as obesity, type 2 diabetes and cardiovascular disease. Previously, we found that HF feeding in rats increases the excretion of fecal bile acids (BAs), specifically 12α-hydroxylated (12αOH) BAs. Although the liver is the metabolic center in our body, the association between hepatic steatosis and 12αOH BAs in HF-fed rats is unclear. Thus, we investigated extensively BA composition in HF-fed rats and evaluated the association between hepatic steatosis and 12αOH BAs. Acclimated male inbred WKAH/HkmSlc rats were divided into two groups and fed either control or HF diet for 8 weeks. Feeding HF diet increased hepatic triglyceride and total cholesterol concentrations, which correlated positively with 12αOH BAs concentrations but not with non-12αOH BAs in the feces, portal plasma and liver. Accompanied by the increase in 12αOH BAs, the rats fed HF diet showed increased fat absorption and higher mRNA expression of liver Cidea. The enhancement of 12αOH BA secretion may contribute to hepatic steatosis by the promotion of dietary fat absorption and hepatic Cidea mRNA expression. The increase in 12αOH BAs was associated with enhanced liver cholesterol 7α-hydroxylase (Cyp7a1) and sterol 12α-hydroxylase (Cyp8b1) mRNA expression. There was a significant increase in 7α-hydroxycholesterol, a precursor of BAs, in the liver of HF-fed rats. Altogether, these data suggest that the HF diet increases preferentially 12αOH BAs synthesis by utilizing the accumulated hepatic cholesterol and enhancing mRNA expression of Cyp7a1 and Cyp8b1 in the liver.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Dieta Alta en Grasa/efectos adversos , Hígado Graso/metabolismo , Animales , Ácidos y Sales Biliares/química , Grasas de la Dieta/efectos adversos , Grasas de la Dieta/metabolismo , Hígado Graso/enzimología , Hígado Graso/etiología , Hígado Graso/genética , Humanos , Hidroxilación , Hígado/enzimología , Hígado/metabolismo , Masculino , Ratas , Ratas Endogámicas WKY , Esteroide 12-alfa-Hidroxilasa/genética , Esteroide 12-alfa-Hidroxilasa/metabolismo , Triglicéridos/metabolismo
13.
Rapid Commun Mass Spectrom ; 34(17): e8831, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32415683

RESUMEN

RATIONALE: Fatty acid esters of hydroxy fatty acids (FAHFAs) are recently discovered endogenous lipids with outstanding health benefits. FAHFAs are known to exhibit antioxidant, antidiabetic and anti-inflammatory properties. The number of known long-chain FAHFAs in mammalian tissues and dietary resources increased recently because of the latest developments in high-resolution tandem mass spectrometry techniques. However, there are no reports on the identification of short-chain fatty acid esterified hydroxy fatty acids (SFAHFAs). METHODS: Intestinal contents, tissues, and plasma of rats fed with high-fat diet (HFD) and normal diet (ND) were analyzed for fatty acids, hydroxy fatty acids, and FAHFAs using ultra-high-performance liquid chromatography (UHPLC) and linear trap quadrupole-Orbitrap mass spectrometry (LTQ Orbitrap MS) with negative heated electrospray ionization. RESULTS: Untargeted analysis of total lipid extracts from murine samples (male 13-week-old WKAH/HKmSlc rats) led to the identification of several new SFAHFAs of acetic acid or propanoic acid esterified long-chain (>C20)-hydroxy fatty acids. Furthermore, MS3 analysis revealed the position of the hydroxyl group in the long-chain fatty acid as C-2. The relative amounts of SFAHFAs were quantified in intestinal contents and their tissues (Cecum, small intestine, and large intestine), liver, and plasma of rats fed with HFD and ND. The large intestine showed the highest abundance of SFAHFAs with a concentration range from 0.84 to 57 pmol/mg followed by the cecum with a range of 0.66 to 28.6 pmol/mg. The SFAHFAs were significantly altered between the HFD and ND groups, with a strong decreasing tendency under HFD conditions. CONCLUSIONS: Identification of these novel SFAHFAs can contribute to a better understanding of the chemical and biological properties of individual SFAHFAs and their possible sources in the gut, which in turn helps us tackle the role of these lipids in various metabolic diseases.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Ácidos Grasos , Espectrometría de Masas/métodos , Animales , Dieta Alta en Grasa , Ésteres/análisis , Ésteres/metabolismo , Ácidos Grasos/análisis , Ácidos Grasos/metabolismo , Ácidos Grasos Volátiles/análisis , Ácidos Grasos Volátiles/metabolismo , Intestinos/química , Hígado/química , Masculino , Ratones , Especificidad de Órganos
14.
Microorganisms ; 8(3)2020 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-32183191

RESUMEN

Bifidobacteria are one of the major components in human gut microbiota and well-known as beneficial microbes. However, clarification of commensal mechanisms of bifidobacteria in the intestines is still ongoing, especially in the presence of the gut microbiota. Here, we applied recombinase-based in vivo expression technology (R-IVET) using the bacteriophage P1 Cre/loxP system to Bifidobacterium longum subsp. longum 105-A (B. longum 105-A) to identify genes that are specifically expressed in the gastrointestinal tract of conventionally raised mice. Oral administration of the genomic DNA library of B. longum 105-A to conventionally raised mice resulted in the identification of 73 in vivo-induced genes. Four out of seven tested genes were verified in vivo-specific induction at least in the cecum by quantitative reverse transcription PCR. Although there is still room for improvement of the system, our findings can contribute to expanding our understanding of the commensal behavior of B. longum in the gut ecosystem.

15.
Anal Sci ; 36(7): 821-828, 2020 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-31956159

RESUMEN

High-fat diet (HFD)-induced obesity is a primary risk factor for serious health problems. Although much research has been performed at the genomic level, lipidomic studies were limited. In this study, we aim to obtain a comprehensive profile of circulating plasma lipids, which are altered in rodent rat obesity by untargeted liquid chromatography-mass spectrometry. Rats fed with HFD for 8 weeks had increased body weight, liver and adipose tissue weight. The analysis results revealed that polyunsaturated fatty acids (PUFAs) and their corresponding phosphatidylcholine, phosphatidylinositol, and phosphatidylserine were significantly decreased in rats fed with HFD. In contrast, less unsaturated and ether type phosphatidylglycerols were increased. The triacylglycerides (TAGs) having saturated FA were increased in the HFD condition, whereas TAGs having PUFA were decreased. The levels of many plasma lipids were altered, and interestingly PUFA derived lipids were negatively associated with obesity. This signifies the importance of a PUFAs enriched diet to overwhelm obesity associated diseases.


Asunto(s)
Lipidómica , Lípidos/sangre , Obesidad/sangre , Animales , Dieta Alta en Grasa/efectos adversos , Masculino , Espectrometría de Masas , Obesidad/inducido químicamente , Ratas
16.
J Nutr Sci Vitaminol (Tokyo) ; 66(6): 571-576, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33390399

RESUMEN

Equol (Eq) is a metabolite of soy isoflavone daidzein (De) produced by the intestinal microbiota. The clinical effectiveness of soy isoflavone is considered to depend on the individual ability of Eq production. Previous studies have demonstrated that habitual dietary patterns may influence the production of Eq. For example, high Eq producers consumed less fat as a percentage of energy than low Eq producers. However, the inhibitory factors of Eq production are unknown. Recently, it was reported that bile acids induced by high-fat diet consumption may be a host-related factor controlling the composition of the intestinal microbiota. In this study, we investigated the effect of cholic acid (CA) administration, a mimic of the microbiota altered by a high-fat diet, on Eq production in mice. CA administration significantly decreased the levels of the De metabolites Eq, dihydrodaidzein, and O-desmethylangolensin in the serum of mice. However, CA administration did not affect the total molar concentration of De and its metabolites. Moreover, CA administration increased the levels of secondary bile acids, particularly deoxycholic acid (DCA), which has strong antibacterial activity in the cecum contents of mice. Thus, CA administration may increase the levels of DCA, a secondary bile acid, resulting in inhibition of Eq production. These findings may help to reveal the factors inhibiting Eq production and enhance the clinical effectiveness of isoflavone intake.


Asunto(s)
Microbioma Gastrointestinal , Isoflavonas , Animales , Ácido Cólico , Dieta Alta en Grasa , Equol , Isoflavonas/farmacología , Ratones
17.
Sci Adv ; 5(8): eaaw7696, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31489370

RESUMEN

The human gut microbiota established during infancy has persistent effects on health. In vitro studies have suggested that human milk oligosaccharides (HMOs) in breast milk promote the formation of a bifidobacteria-rich microbiota in infant guts; however, the underlying molecular mechanism remains elusive. Here, we characterized two functionally distinct but overlapping fucosyllactose transporters (FL transporter-1 and -2) from Bifidobacterium longum subspecies infantis. Fecal DNA and HMO consumption analyses, combined with deposited metagenome data mining, revealed that FL transporter-2 is primarily associated with the bifidobacteria-rich microbiota formation in breast-fed infant guts. Structural analyses of the solute-binding protein (SBP) of FL transporter-2 complexed with 2'-fucosyllactose and 3-fucosyllactose, together with phylogenetic analysis of SBP homologs of both FL transporters, highlight a unique adaptation strategy of Bifidobacterium to HMOs, in which the gain-of-function mutations enable FL transporter-2 to efficiently capture major fucosylated HMOs. Our results provide a molecular insight into HMO-mediated symbiosis and coevolution between bifidobacteria and humans.


Asunto(s)
Bifidobacterium/fisiología , Microbioma Gastrointestinal/fisiología , Oligosacáridos/metabolismo , Simbiosis/fisiología , Trisacáridos/metabolismo , Adulto , Anciano , Bifidobacterium/metabolismo , Evolución Biológica , Heces/microbiología , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Metagenoma/fisiología , Persona de Mediana Edad , Leche Humana/metabolismo , Adulto Joven
18.
Biosci Biotechnol Biochem ; 83(7): 1329-1335, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30912732

RESUMEN

Difructose anhydride III (DFAIII) is a prebiotic involved in the reduction of secondary bile acids (BAs). We investigated whether DFAIII modulates BA metabolism, including enterohepatic circulation, in the rats fed with a diet supplemented with cholic acid (CA), one of the 12α-hydroxylated BAs. After acclimation, the rats were fed with a control diet or a diet supplemented with DFAIII. After 2 weeks, each group was further divided into two groups and was fed diet with or without CA supplementation at 0.5 g/kg diet. BA levels were analyzed in aortic and portal plasma, liver, intestinal content, and feces. As a result, DFAIII ingestion reduced the fecal deoxycholic acid level via the partial suppression of deconjugation and 7α-dehydroxylation of BAs following CA supplementation. These results suggest that DFAIII suppresses production of deoxycholic acid in conditions of high concentrations of 12α-hydroxylated BAs in enterohepatic circulation, such as obesity or excess energy intake. Abbreviation: BA: bile acid; BSH: bile salt hydrolase; CA: cholic acid; DCA: deoxycholic acid; DFAIII: difructose anhydride III; MCA: muricholic acid; MS: mass spectrometry; NCDs: non-communicable diseases; LC: liquid chromatography; SCFA: short-chain fatty acid; TCA: taurocholic acid; TCDCA: taurochenodeoxycholic acid; TDCA: taurodeoxycholic acid; TUDCA: tauroursodeoxychlic acid; TαMCA: tauro-α-muricholic acid; TßMCA: tauro-ß-muricholic acid; TωMCA: tauro-ω-muricholic acid.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Ácido Cólico/administración & dosificación , Suplementos Dietéticos , Disacáridos/farmacología , Animales , Ácidos y Sales Biliares/sangre , Disacáridos/administración & dosificación , Heces/química , Contenido Digestivo , Hidroxilación , Masculino , Ratas , Ratas Wistar , Espectrofotometría Atómica
19.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1864(3): 403-412, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-29883797

RESUMEN

Bile acids exhibit strong antimicrobial activity as natural detergents, and are involved in lipid digestion and absorption. We investigated the mechanism of bile acid adaptation in Lactobacillus gasseri JCM1131T. Exposure to sublethal concentrations of cholic acid (CA), a major bile acid in humans, resulted in development of resistance to otherwise-lethal concentrations of CA by this intestinal lactic acid bacterium. As this adaptation was accompanied by decreased cell-membrane damage, we analyzed the membrane lipid composition of L. gasseri. Although there was no difference in the proportions of glycolipids (~70%) and phospholipids (~20%), adaptation resulted in an increased abundance of long-sugar-chain glycolipids and a 100% increase in cardiolipin (CL) content (to ~50% of phospholipids) at the expense of phosphatidylglycerol (PG). In model vesicles, the resistance of PG vesicles to solubilization by CA increased with increasing CL/PG ratio. Deletion of the two putative CL synthase genes, the products of which are responsible for CL synthesis from PG, decreased the CL content of the mutants, but did not affect their ability to adapt to CA. Exposure to CA restored the CL content of the two single-deletion mutants, likely due to the activities of the remaining CL synthase. In contrast, the CL content of the double-deletion mutant was not restored, and the lipid composition was modified such that PG predominated (~45% of total lipids) at the expense of glycolipids. Therefore, CL plays important roles in bile acid resistance and maintenance of the membrane lipid composition in L. gasseri.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Cardiolipinas/metabolismo , Ácidos y Sales Biliares/fisiología , Cardiolipinas/fisiología , Membrana Celular/metabolismo , Ácido Cólico/metabolismo , Glucolípidos/metabolismo , Glucolípidos/fisiología , Lactobacillus gasseri/metabolismo , Lactobacillus gasseri/fisiología , Lípidos de la Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Membranas/metabolismo , Fosfatidilgliceroles/metabolismo , Fosfolípidos/metabolismo , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo
20.
Appl Environ Microbiol ; 84(17)2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29934330

RESUMEN

Bifidobacteria are a major component of the intestinal microbiota in humans, particularly breast-fed infants. Therefore, elucidation of the mechanisms by which these bacteria colonize the intestine is desired. One approach is transposon mutagenesis, a technique currently attracting much attention because, in combination with next-generation sequencing, it enables exhaustive identification of genes that contribute to microbial fitness. We now describe a transposon mutagenesis system for Bifidobacterium longum subsp. longum 105-A (JCM 31944) based on ISBlo11, a native IS3 family insertion sequence. To build this system, xylose-inducible or constitutive bifidobacterial promoters were tested to drive the expression of full-length or a truncated form at the N terminus of the ISBlo11 transposase. An artificial transposon plasmid, pBFS12, in which ISBlo11 terminal inverted repeats are separated by a 3-bp spacer, was also constructed to mimic the transposition intermediate of IS3 elements. The introduction of this plasmid into a strain expressing transposase resulted in the insertion of the plasmid with an efficiency of >103 CFU/µg DNA. The plasmid targets random 3- to 4-bp sequences, but with a preference for noncoding regions. This mutagenesis system also worked at least in B. longum NCC2705. Characterization of a transposon insertion mutant revealed that a putative α-glucosidase mediates palatinose and trehalose assimilation, demonstrating the suitability of transposon mutagenesis for loss-of-function analysis. We anticipate that this approach will accelerate functional genomic studies of B. longum subsp. longumIMPORTANCE Several hundred species of bacteria colonize the mammalian intestine. However, the genes that enable such bacteria to colonize and thrive in the intestine remain largely unexplored. Transposon mutagenesis, combined with next-generation sequencing, is a promising tool to comprehensively identify these genes but has so far been applied only to a small number of intestinal bacterial species. In this study, a transposon mutagenesis system was established for Bifidobacterium longum subsp. longum, a representative health-promoting Bifidobacterium species. The system enables the identification of genes that promote colonization and survival in the intestine and should help illuminate the physiology of this species.


Asunto(s)
Bifidobacterium longum/genética , Elementos Transponibles de ADN/genética , Microbioma Gastrointestinal/genética , Mutagénesis/genética , Plásmidos/genética , Genoma Bacteriano/genética , Humanos , Intestinos/microbiología , Isomaltosa/análogos & derivados , Isomaltosa/metabolismo , Análisis de Secuencia de ADN , Transposasas/genética , Trehalosa/metabolismo , alfa-Glucosidasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA