Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 90(5): e0029424, 2024 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-38624200

RESUMEN

Aspergillus oryzae spores, when sprinkled onto steamed rice and allowed to propagate, are referred to as rice "koji." Agmatine, a natural polyamine derived from arginine through the action of arginine decarboxylase (ADC), is abundantly produced by solid state-cultivated rice koji of A. oryzae RIB40 under low pH conditions, despite the apparent absence of ADC orthologs in its genome. Mass spectrometry imaging revealed that agmatine was accumulated inside rice koji at low pH conditions, where arginine was distributed. ADC activity was predominantly observed in substrate mycelia and minimally in aerial mycelia. Natural ADC was isolated from solid state-cultivated A. oryzae rice koji containing substrate mycelia, using ammonium sulfate fractionation, ion exchange, and gel-filtration chromatography. The purified protein was subjected to sodium dodecyl sulfate poly-acrylamide gel electrophoresis (SDS-PAGE), and the detected peptide band was digested for identification by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The gene AO090102000327 of strain RIB40 was identified, previously annotated as phosphatidylserine decarboxylase (PSD), and encoded a 483-amino acid peptide. Recombinant protein encoded by AO090102000327 was expressed in Escherichia coli cells cultivated at 20°C, resulting in the detection of 49 kDa and 5 kDa peptides. The protein exhibited pyruvoyl-dependent decarboxylase activity, favoring arginine over ornithine and showing no activity with phosphatidylserine. The gene was designated Ao-adc1. Ao-ADC1 expression in rice koji at pH 4-6 was confirmed through western blotting using the anti-Ao-ADC1 serum. These findings indicate that Ao-adc1 encodes arginine decarboxylase involved in agmatine production.IMPORTANCEGene AO090102000327 in A. oryzae RIB40, previously annotated as a PSD, falls into a distinct clade when examining the phylogenetic distribution of PSDs. Contrary to the initial PSD annotation, our analysis indicates that the protein encoded by AO090102000327 is expressed in the substrate mycelia area of solid state-cultivated A. oryzae rice koji and functions as an arginine decarboxylase (ADC). The clade to which Ao-ADC1 belongs includes three other Ao-ADC1 paralogs (AO090103000445, AO090701000800, and AO090701000802) that presumably encode ADC rather than PSDs. Regarding PSD, AO090012000733 and AO090005001124 were speculated to be nonmitochondrial and mitochondrial PSDs in A. oryzae RIB40, respectively.


Asunto(s)
Aspergillus oryzae , Carboxiliasas , Proteínas Fúngicas , Oryza , Aspergillus oryzae/genética , Aspergillus oryzae/enzimología , Carboxiliasas/genética , Carboxiliasas/metabolismo , Carboxiliasas/química , Oryza/microbiología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Agmatina/metabolismo
2.
J Biotechnol ; 380: 38-50, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38135188

RESUMEN

We evaluated the suitability of Komagataeibacter europaeus, a vinegar production organism adept at synthetic media growth, as a host for heterologous gene expression. Cryptic plasmids (pGE1 and pGE2 derivatives) from K. europaeus strain KGMA0119 were employed as vectors for heterologous gene expression. The focus was placed on the groES promoter as a potential inducible switch. The groES promoter was fused with the EGFP gene and introduced into a pGE1 derivative to assess its suitability. Ethanol, acetic acid, and heat stresses were examined under various conditions for induction. EGFP transcription surged 600-fold when late logarithmic phase K. europaeus cells, cultured at 30 °C, endured heat stress at 40 °C, coupled with 20% acetic acid and 30% ethanol stress after an additional 6-hour cultivation. This robust induction system was then applied to express two proteins, Tth pol from the thermophilic bacterium Thermus thermophilus strain M1 and UPV230, a restriction enzyme from the acid-tolerant microorganism Ureaplasma parvum, known to cause vaginal infections and miscarriages. Both Tth pol and UPV230 were successfully expressed in K. europaeus cells and purified. The recovery of Tth pol from K. europaeus cells (480 µg protein per liter culture) was approximately half that from E. coli (960 µg protein per liter culture). In contrast, UPV230 recovery from K. europaeus cells (640 µg protein per liter culture) was nearly 10 times higher than that from Escherichia coli (66 µg protein per liter). The data highlights the potential of acetic acid bacteria as a host for producing acidophilic proteins. The shift in recognition from a 6-base sequence to a 4-base sequence of UPV230 was observed, accompanied by a change in structure as the pH transitioned from acidic pH to near-neutral pH.


Asunto(s)
Ácido Acético , Escherichia coli , Ácido Acético/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Alprostadil/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Etanol/metabolismo
3.
J Biosci Bioeng ; 135(4): 282-290, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36806411

RESUMEN

Recombinase polymerase amplification (RPA) is an isothermal DNA amplification reaction at around 41 °C using recombinase (Rec), single-stranded DNA-binding protein (SSB), and strand-displacing DNA polymerase (Pol). Component instability and the need to store commercial kits in a deep freezer until use are some limitations of RPA. In a previous study, Bacillus stearothermophilus Pol (Bst-Pol) was used as a thermostable strand-displacing DNA polymerase in RPA. Here, we attempted to optimize the lyophilization conditions for RPA with newly isolated thermostable DNA polymerases for storage at room temperature. We isolated novel two thermostable strand-displacing DNA polymerases, one from a thermophilic bacterium Aeribacillus pallidus (H1) and the other from Geobacillus zalihae (C1), and evaluated their performances in RPA reaction. Urease subunit ß (UreB) DNA from Ureaplasma parvum serovar 3 was used as a model target for evaluation. The RPA reaction with H1-Pol or C1-Pol was performed at 41 °C with the in vitro synthesized standard UreB DNA. The minimal initial copy numbers of standard DNA from which the amplified products were observed were 600, 600, and 6000 copies for RPA with H1-Pol, C1-Pol, and Bst-Pol, respectively. Optimization was carried out using RPA components, showing that the lyophilized RPA reagents containing H1-Pol exhibited the same performance as the corresponding liquid RPA reagents. In addition, lyophilized RPA reagents with H1-Pol showed almost the same activity after two weeks of storage at room temperature as the freshly prepared liquid RPA reagents. These results suggest that lyophilized RPA reagents with H1-Pol are preferable to liquid RPA reagents for onsite use.


Asunto(s)
Geobacillus , Recombinasas , Recombinasas/genética , Recombinasas/metabolismo , ADN Polimerasa Dirigida por ADN/genética , Geobacillus/genética , Técnicas de Amplificación de Ácido Nucleico/métodos , Sensibilidad y Especificidad
4.
Appl Environ Microbiol ; 88(21): e0115322, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36226967

RESUMEN

Proteins immobilized on biosilica which have superior reactivity and specificity and are innocuous to natural environments could be useful biological materials in industrial processes. One recently developed technique, living diatom silica immobilization (LiDSI), has made it possible to immobilize proteins, including multimeric and redox enzymes, via a cellular excretion system onto the silica frustule of the marine diatom Thalassiosira pseudonana. However, the number of application examples so far is limited, and the type of proteins appropriate for the technique is still enigmatic. Here, we applied LiDSI to six industrially relevant polypeptides, including protamine, metallothionein, phosphotriesterase, choline oxidase, laccase, and polyamine synthase. Protamine and metallothionein were successfully immobilized on the frustule as protein fusions with green fluorescent protein (GFP) at the N terminus, indicating that LiDSI can be used for polypeptides which are rich in arginine and cysteine. In contrast, we obtained mutants for the latter four enzymes in forms without green fluorescent protein. Immobilized phosphotriesterase, choline oxidase, and laccase showed enzyme activities even after the purification of frustule in the presence of 1% (wt/vol) octylphenoxy poly(ethyleneoxy)ethanol. An immobilized branched-chain polyamine synthase changed the intracellular polyamine composition and silica nanomorphology. These results illustrate the possibility of LiDSI for industrial applications. IMPORTANCE Proteins immobilized on biosilica which have superior reactivity and specificity and are innocuous to natural environments could be useful biological materials in industrial processes. Living diatom silica immobilization (LiDSI) is a recently developed technique for in vivo protein immobilization on the diatom frustule. We aimed to explore the possibility of using LiDSI for industrial applications by successfully immobilizing six polypeptides: (i) protamine (Oncorhynchus keta), a stable antibacterial agent; (ii) metallothionein (Saccharomyces cerevisiae), a metal adsorption molecule useful for bioremediation; (iii) phosphotriesterase (Sulfolobus solfataricus), a scavenger for toxic organic phosphates; (iv) choline oxidase (Arthrobacter globiformis), an enhancer for photosynthetic activity and yield of plants; (v) laccase (Bacillus subtilis), a phenol oxidase utilized for delignification of lignocellulosic materials; and (vi) branched-chain polyamine synthase (Thermococcus kodakarensis), which produces branched-chain polyamines important for DNA and RNA stabilization at high temperatures. This study provides new insights into the field of applied biological materials.


Asunto(s)
Diatomeas , Hidrolasas de Triéster Fosfórico , Diatomeas/metabolismo , Proteínas Fluorescentes Verdes/genética , Lacasa/genética , Lacasa/metabolismo , Dióxido de Silicio/química , Dióxido de Silicio/metabolismo , Péptidos/metabolismo , Poliaminas/metabolismo , Hidrolasas de Triéster Fosfórico/metabolismo , Metalotioneína/metabolismo , Protaminas/metabolismo
5.
Mol Biol Rep ; 49(4): 2847-2856, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35098395

RESUMEN

BACKGROUND: Recombinase (uvsY and uvsX) from bacteriophage T4 is a key enzyme for recombinase polymerase amplification (RPA) that amplifies a target DNA sequence at a constant temperature with a single-stranded DNA-binding protein and a strand-displacing polymerase. The present study was conducted to examine the effects of the N- and C-terminal tags of uvsY on its function in RPA to detect SARS-CoV-2 DNA. METHODS: Untagged uvsY (uvsY-Δhis), N-terminal tagged uvsY (uvsY-Nhis), C-terminal tagged uvsY (uvsY-Chis), and N- and C-terminal tagged uvsY (uvsY-NChis) were expressed in Escherichia coli and purified. RPA reaction was carried out with the in vitro synthesized standard DNA at 41 °C. The amplified products were separated on agarose gels. RESULTS: The minimal initial copy numbers of standard DNA from which the amplified products were observed were 6 × 105, 60, 600, and 600 copies for the RPA with uvsY-Δhis, uvsY-Nhis, uvsY-Chis, and uvsY-NChis, respectively. The minimal reaction time at which the amplified products were observed were 20, 20, 30, and 20 min for the RPA with uvsY-Δhis, uvsY-Nhis, uvsY-Chis, and uvsY-NChis, respectively. The RPA with uvsY-Nhis exhibited clearer bands than that with either of other three uvsYs. CONCLUSIONS: The reaction efficiency of RPA with uvsY-Nhis was the highest, suggesting that uvsY-Nhis is suitable for use in RPA.


Asunto(s)
Bacteriófago T4/enzimología , ADN Viral/química , Proteínas de Unión al ADN/química , Proteínas de la Membrana/química , Técnicas de Amplificación de Ácido Nucleico , SARS-CoV-2/química , Proteínas Virales/química , ADN Viral/genética , SARS-CoV-2/genética
6.
J Bacteriol ; 203(18): e0016221, 2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34228496

RESUMEN

Acetic acid bacteria grow while producing acetic acid, resulting in acidification of the culture. Limited reports elucidate the effect of changes in intracellular pH on transcriptional factors. In the present study, the intracellular pH of Komagataeibacter europaeus was monitored with a pH-sensitive green fluorescent protein, showing that the intracellular pH decreased from 6.3 to 4.7 accompanied by acetic acid production during cell growth. The leucine-responsive regulatory protein of K. europaeus (KeLrp) was used as a model to examine pH-dependent effects, and its properties were compared with those of the Escherichia coli ortholog (EcLrp) at different pH levels. The DNA-binding activities of EcLrp and KeLrp with the target DNA (Ec-ilvI and Ke-ilvI) were examined by gel mobility shift assays under various pH conditions. EcLrp showed the highest affinity with the target at pH 8.0 (Kd [dissociation constant], 0.7 µM), decreasing to a minimum of 3.4 µM at pH 4.0. Conversely, KeLrp did not show significant differences in binding affinity between pH 4 and 7 (Kd, 1.0 to 1.5 µM), and the highest affinity was at pH 5.0 (Kd, 1.0 µM). Circular dichroism spectroscopy revealed that the α-helical content of KeLrp was the highest at pH 5.0 (49%) and was almost unchanged while being maintained at >45% over a range of pH levels examined, while that of EcLrp decreased from its maximum (49% at pH 7.0) to its minimum (36% at pH 4.0). These data indicate that KeLrp is stable and functions over a wide range of intracellular pH levels. IMPORTANCE Lrp is a highly conserved transcriptional regulator found in bacteria and archaea and regulates transcriptions of various genes. The intracellular pH of acetic acid bacteria (AAB) changes accompanied by acetic acid production during cell growth. The Lrp of AAB K. europaeus (KeLrp) was structurally stable over a wide range of pH and maintained DNA-binding activity even at low pH compared with Lrp from E. coli living in a neutral environment. An in vitro experiment showed DNA-binding activity of KeLrp to the target varied with changes in pH. In AAB, change of the intracellular pH during a cell growth would be an important trigger in controlling the activity of Lrp in vivo.


Asunto(s)
Ácido Acético/metabolismo , Acetobacteraceae/genética , Proteínas de Unión al ADN/metabolismo , Proteína Reguladora de Respuesta a la Leucina/genética , Proteína Reguladora de Respuesta a la Leucina/metabolismo , Acetobacteraceae/crecimiento & desarrollo , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/genética , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Proteínas Fluorescentes Verdes/metabolismo , Concentración de Iones de Hidrógeno , Proteína Reguladora de Respuesta a la Leucina/química , Unión Proteica
7.
Amino Acids ; 52(2): 287-299, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31621031

RESUMEN

Branched-chain polyamine (BCPA) synthase (BpsA), encoded by the bpsA gene, is responsible for the biosynthesis of BCPA in the hyperthermophilic archaeon Thermococcus kodakarensis, which produces N4-bis(aminopropyl)spermidine and spermidine. Here, next-generation DNA sequencing and liquid chromatography-mass spectrometry (LC-MS) were used to perform transcriptomic and proteomic analyses of a T. kodakarensis strain (DBP1) lacking bpsA. Subsequently, the contributions of BCPA to gene transcription (or transcript stabilization) and translation (or protein stabilization) were analyzed. Compared with those in the wild-type strain (KU216) cultivated at 90 °C, the transcript levels of 424 and 21 genes were up- and downregulated in the DBP1 strain, respectively. The expression levels of 12 frequently-used tRNAs were lower in DBP1 cells than KU216 cells, suggesting that BCPA affects translation efficiency in T. kodakarensis. LC-MS analyses of cells grown at 90 °C detected 50 proteins in KU216 cells only, 109 proteins in DBP1 cells only, and 499 proteins in both strains. Notably, the transcript levels of some genes did not correlate with those of the proteins. RNA-seq and RT-qPCR analyses of ten proteins that were detected in KU216 cells only, including three flagellin-related proteins (FlaB2-4) and cytosolic NiFe-hydrogenase subunit alpha (HyhL), revealed that the corresponding transcripts were expressed at higher levels in DBP1 cells than KU216 cells. Electron microscopy analyses showed that flagella formation was disrupted in DBP1 cells at 90 °C, and western blotting confirmed that HyhL expression was eliminated in the DBP1 strain. These results suggest that BCPA plays a regulatory role in gene expression in T. kodakarensis.


Asunto(s)
Poliaminas/metabolismo , Thermococcus/genética , Thermococcus/metabolismo , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Regulación de la Expresión Génica Arqueal , Calor , Hidrogenasas/genética , Hidrogenasas/metabolismo , Poliaminas/química , Thermococcus/crecimiento & desarrollo
8.
Amino Acids ; 52(2): 275-285, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31101997

RESUMEN

Branched-chain polyamines (BCPAs) are unique polycations found in (hyper)thermophiles. Thermococcus kodakarensis grows optimally at 85 °C and produces the BCPA N4-bis(aminopropyl)spermidine by sequential addition of decarboxylated S-adenosylmethionine (dcSAM) aminopropyl groups to spermidine (SPD) by BCPA synthase A (BpsA). The T. kodakarensis bpsA deletion mutant (DBP1) did not grow at temperatures at or above 93 °C, and grew at 90 °C only after a long lag period following accumulation of excess cytoplasmic SPD. This suggests that BCPA plays an essential role in cell growth at higher temperatures and raises the possibility that BCPA is involved in controlling gene expression. To examine the effects of BCPA on transcription, the RNA polymerase (RNAP) core fraction was extracted from another bpsA deletion mutant, DBP4 (RNAPDBP4), which carried a His-tagged rpoL, and its enzymatic properties were compared with those of RNAP from wild-type (WT) cells (RNAPWT). LC-MS analysis revealed that nine ribosomal proteins were detected from RNAPWT but only one form RNAPDBP4. These results suggest that BCPA increases the linkage between RNAP and ribosomes to achieve efficient coupling of transcription and translation. Both RNAPs exhibited highest transcription activity in vitro at 80 °C, but the specific activity of RNAPDBP4 was lower than that of RNAPWT. Upon addition of SPD and BCPA, both increased the transcriptional activity of RNAPDBP4; however, elevation by BCPA was achieved at a tenfold lower concentration. Addition of BCPA also protected RNAPDBP4 against thermal inactivation at 90 °C. These results suggest that BCPA increases transcriptional activity in T. kodakarensis by stabilizing the RNAP complex at high temperatures.


Asunto(s)
Proteínas Arqueales/química , Proteínas Arqueales/metabolismo , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/metabolismo , Poliaminas/metabolismo , Thermococcus/enzimología , Proteínas Arqueales/genética , ARN Polimerasas Dirigidas por ADN/genética , Estabilidad de Enzimas , Calor , Poliaminas/química , Thermococcus/química , Thermococcus/genética , Thermococcus/metabolismo
9.
FEBS J ; 286(19): 3926-3940, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31162806

RESUMEN

Branched-chain polyamine synthase (BpsA) catalyzes sequential aminopropyl transfer from the donor, decarboxylated S-adenosylmethionine (dcSAM), to the acceptor, linear-chain polyamine, resulting in the production of a quaternary-branched polyamine via tertiary branched polyamine intermediates. Here, we analyzed the catalytic properties and X-ray crystal structure of Tth-BpsA from Thermus thermophilus and compared them with those of Tk-BpsA from Thermococcus kodakarensis, which revealed differences in acceptor substrate specificity and C-terminal structure between these two enzymes. To investigate the role of the C-terminal flexible region in acceptor recognition, a region (QDEEATTY) in Tth-BpsA was replaced with that in Tk-BpsA (YDDEESSTT) to create chimeric Tth-BpsA C9, which showed a severe reduction in catalytic efficiency toward N4 -aminopropylnorspermidine, but not toward N4 -aminopropylspermidine, mimicking Tk-BpsA substrate specificity. Tth-BpsA C9 Tyr346 and Thr354 contributed to discrimination between tertiary branched-chain polyamine substrates, suggesting that the C-terminal region of BpsA recognizes acceptor substrates. Liquid chromatography-tandem mass spectrometry analysis on a Tk-BpsA reaction mixture with dcSAM revealed two aminopropyl groups bound to two of five aspartate/glutamate residues (Glu339 , Asp342 , Asp343 , Glu344 , and Glu345 ) in the C-terminal flexible region. Mutating each of these five amino acid residues to asparagine/glutamine resulted in a slight decrease in activity. The quadruple mutant D342N/D343N/E344Q/E345Q exhibited a severe reduction in catalytic efficiency, suggesting that these aspartate/glutamate residues function to receive aminopropyl chains. In addition, the X-ray crystal structure of the Tk-BpsA ternary complex bound to N4 -bis(aminopropyl)spermidine revealed that Asp126 and Glu259 interacted with the aminopropyl moiety in N4 -aminopropylspermidine.


Asunto(s)
Poliaminas/metabolismo , Espermidina Sintasa/metabolismo , Catálisis , Cromatografía Liquida , Espermidina Sintasa/química , Especificidad por Sustrato , Espectrometría de Masas en Tándem , Thermococcus/enzimología , Thermus thermophilus/enzimología
10.
Chemphyschem ; 19(18): 2299-2304, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-29931720

RESUMEN

A pentavalent branched-chain polyamine, N4 -bis(aminopropyl)spermidine 3(3)(3)4, is a unique polycation found in the hyperthermophilic archaeon Thermococcus kodakarensis, which grows at temperatures between 60 and 100 °C. We studied the effects of this branched-chain polyamine on DNA structure at different temperatures up to 80 °C. Atomic force microscopic observation revealed that 3(3)(3)4 induces a mesh-like structure on a large DNA (166 kbp) at 24 °C. With an increase in temperature, DNA molecules tend to unwind, and multiple nano-loops with a diameter of 10-50 nm are generated along the DNA strand at 80 °C. These results were compared to those obtained with linear-chain polyamines, homocaldopentamine 3334 and spermidine, the former of which is a structural isomer of 3(3)(3)4. These specific effects are expected to neatly concern with its role on high-temperature preference in hyperthermophiles.


Asunto(s)
ADN/química , Espermidina/análogos & derivados , Espermidina/química , Animales , Bacteriófago T4/genética , Bovinos , ADN/genética , Genoma , Calor , Microscopía de Fuerza Atómica , Conformación de Ácido Nucleico , Poliaminas/química , Espermidina/síntesis química , Thermococcus/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...