RESUMEN
Inbred species are useful resources for a variety of biomedical research applications. To create isogenic zebrafish, it is feasible to stop meiosis II (repeatedly) or mitosis (two times) in a haploid embryo by applying pressure or by delivering a heat shock, respectively. In this study, to improve the repeatability, we suggest a less complicated approach based on sperm ultraviolet-C (UV-C) exposure for a shorter period followed by heat shock at various temperatures, eliminating the use of pressure in meiotic therapy since heat shock is more accessible to laboratories. In this study, the survivability rates of meiotic (Mei) and mitotic (Mit) gynogenesis offspring produced by various combinations of irradiation (28.5, 105, and 210 mJ/cm2) and temperature (Mei: 40.40°C, 40.60°C, or 40.90°C; Mt: 41.40°C, 41.90°C, or 42.45°C) were compared with diploid (C) and haploid (H) controls. Our findings demonstrated that 40.60°C and 41.90°C were the most suitable temperatures to produce meiotic and mitotic gynogenesis, respectively, whereas 28.5 mJ/cm2 was more successful in ensuring haploid embryos. As a result, we deduced that meiotic gynogenesis produces more viable offspring than the mitotic approach and requires a lower temperature to maintain the second polar body.
Asunto(s)
Semen , Pez Cebra , Masculino , Animales , Haploidia , Espermatozoides , Respuesta al Choque TérmicoRESUMEN
Risperidone is an antipsychotic medication used in the treatment of conditions like autism and schizophrenia. The goal of the current study was to examine the effects of risperidone in zebrafish embryos ( Danio rerio ) with regard to survival, development, and cardiac and neural systems. The results showed that concentrations above 100 µM were associated with deaths, teratogenic effects, and cardiotoxic and neurotoxic effects. The findings support the utility of zebrafish for toxicological screening studies.
Asunto(s)
Contaminantes Químicos del Agua , Pez Cebra , Animales , Risperidona/toxicidad , Contaminantes Químicos del Agua/farmacología , Embrión no Mamífero , CorazónRESUMEN
The salt calcium chloride (CaCl2) is widely used in industry as a food additive; levels for human consumption are regulated by international or governmental agencies. Generally, the food industry relies on toxicity studies conducted in mammals such as mice, rats, and rabbits for determining food safety. However, testing in mammals is time-consuming and expensive. Zebrafish have been used in a range of toxicological analyses and offer advantages with regard to sensitivity, time, and cost. However, information in not available with regard to whether the sensitivity of zebrafish to CaCl2 is comparable to the concentrations of CaCl2 used as food additives. The aim of this study was to compare the CaCl2 tolerance of zebrafish embryos and larvae with concentrations currently approved as food additives. Acute toxicity, embryotoxicity, cardiotoxicity, and neurotoxicity assays were used to determine the threshold toxic concentration of CaCl2 in zebrafish embryos and larvae. The data showed that doses above 0.4% had toxic effects on development and on the activity of the cardiac and neuronal systems. Furthermore, all embryos exposed to 0.8 and 1.6% of CaCl2 died after 24 hpf. These findings are consistent with the limits of CaCl2 concentrations approved by Codex Alimentarius. Therefore, zebrafish embryos could be suitable for screening food additives.
Asunto(s)
Embrión no Mamífero , Pez Cebra , Humanos , Ratones , Ratas , Conejos , Animales , Cloruro de Calcio/toxicidad , Larva , Aditivos Alimentarios/farmacología , Inocuidad de los Alimentos , MamíferosRESUMEN
Zebrafish is considered an unprecedented animal model in drug discovery. A review of the literature presents highlights and elucidates the biological effects of chemical components found in Cannabis sativa. Particular attention is paid to endocannabinoid system (eCB) and its main receptors (CB1 and CB2). The zebrafish model is a promising one for the study of cannabinoids because of the many similarities to the human system. Despite the recent advances on the eCB system, there is still the need to elucidate some of the interactions and, thus, the zebrafish model can be used for that purpose as it respects the 3Rs concept and reduced time and costs. In view of the relevance of cannabinoids in the treatment and prevention of diseases, as well as the importance of the zebrafish animal model in elucidating the biological effects of new drugs, the aim of this study was to bring to light information on the use of the zebrafish animal model in testing C. sativa-based medicines.
RESUMEN
BACKGROUND: Recently a screen from a library of 1.8 million compounds identified in vitro a potent activity of the 2-aminobenzimidazoles series against Leishmania infantum, the etiological agent responsible by over 20.000 deaths each year. Several analogs were synthesized and in vitro tested through an optimization program, leading to a promising 2-aminobenzimidazoles derived compound (2amnbzl-d) that was progressed to in vivo mice studies. However, the not expected toxic effects prevented its progression to more advanced preclinical and clinical phases of drug development. Due to limitations of cell models in detecting whole organism complex interactions, 90% of the compounds submitted to pre-clinical tests are reproved. The use of Zebrafish embryo models could improve this rate, saving mammals, time and costs in the development of new drugs. To test this hypothesis, we compared 2amnbzl-d with two compounds with already established safety profile: carbamazepine and benznidazole, using an embryo Zebrafish platform based on acute toxicity, hepatotoxicity, neurotoxicity and cardiotoxicity assays (Pltf-AcHpNrCd). RESULTS: Tests were performed blindly, and the results demonstrated the presence of lethal and teratogenic effects (CL50%: 14.8 µM; EC50%: 8.6 µM), hepatotoxic in concentrations above 7.5 µM and neurotoxic in embryos exposed to 15 µM of 2amnbzl-d. Nevertheless, benznidazole exposition showed no toxicity and only the 100 µM of carbamazepine induced a bradycardia. CONCLUSIONS: Results using Pltf-AcHpNrCd with zebrafish reproduced that found in the toxicological tests with mammals to a portion of the costs and time of experimentation.
RESUMEN
Artemisinin extracted from Artemisia annua L. plants has a range of properties that qualifies it to treat several diseases, such as malaria and cancer. However, it has short half-life, which requires making continuous use of it, which has motivated the association of artemisinin (ART) with polymeric nanoparticles to increase its therapeutic efficiency. However, the ecotoxicological safety of this association has been questioned, given the scarcity of studies in this area. Thus, in this work the toxicity of Poly (ε-Caprolactone) nanocapsules added with ART (ART-NANO) in zebrafish (Danio rerio), embryos and adults was studied. Different endpoints were analyzed in organisms exposed to ART-NANO, including those predictive of embryotoxicity and histopatoxicity. Embryotoxicity was analyzed based on Organization for Economic Co-operation and Development (OECD) test guideline (236) for fish embryo acute toxicity applied to zebrafish (Danio rerio) at 96 hpf under five nominal logarithmic concentrations (0.125 to 2.0 mg/ L). Our results demonstrate, mainly, that fertilized eggs presented increased coagulation, lack of heart rate, vitelline sac displacement and lack of somite formation. On the other hand, adult individuals (exposed to the same concentrations and evaluated after 24 and 96 h of exposure) have shown increased pericarditis. Therefore, the treatment based on ART, poly (ε-caprolactone) nanocapsules and on their combination at different concentrations have shown toxic effects on zebrafish embryos and adult individuals.
Asunto(s)
Artemisininas , Nanocápsulas , Contaminantes Químicos del Agua , Adulto , Animales , Artemisininas/toxicidad , Caproatos , Embrión no Mamífero , Humanos , Lactonas , Contaminantes Químicos del Agua/toxicidad , Pez CebraRESUMEN
Mucoadhesive polymeric nanocapsules have attracted interest of researchers from different fields from natural sciences because of their ability to interact with the mucosa and increase drug permeation. Anesthesia by immersion causes absorption through the skin and gills of fish, so it is important to evaluate the exposure of these organs to drug nanosystems. Benzocaine (BENZ) is one of the most popular anesthetic agents used in fish anesthesia, but it has drawbacks because of its low bioavailability, resulting in weak absorption after immersion. Here we describe method developed for preparing and characterizing chitosan-coated PLGA mucoadhesive nanoparticles containing BENZ (NPMAs) for zebrafish immersion anesthesia. We determined the lowest effective concentration, characterized the interaction of the mucoadhesive system with fish, measured the anesthetic efficacy, and evaluated possible toxic effects in embryos and adults exposed to the nanoformulations. This study opens perspectives for using nanoformulations prepared with BENZ in aquaculture, allowing reduction of dosage as well as promoting more effective anesthesia and improved interaction with the mucoadhesive system of fish.
Asunto(s)
Anestesia/veterinaria , Benzocaína/administración & dosificación , Nanocápsulas/administración & dosificación , Pez Cebra , Animales , Acuicultura , Quitosano/administración & dosificación , Quitosano/toxicidad , Portadores de Fármacos/administración & dosificación , Portadores de Fármacos/toxicidad , Liberación de Fármacos , Branquias/efectos de los fármacos , Nanocápsulas/toxicidad , Piel/efectos de los fármacosRESUMEN
Much of medical research relies on animal models to deepen knowledge of the causes of animal and human diseases, as well as to enable the development of innovative therapies. Despite rodents being the most widely used research model worldwide, in recent decades, the use of the zebrafish (Danio rerio) model has exponentially been adopted among the scientific community. This is because such a small tropical freshwater teleost fish has crucial genetic, anatomical and physiological homology with mammals. Therefore, zebrafish constitutes an excellent experimental model for behavioral, genetic and toxicological studies which unravels the mechanism of various human diseases. Furthermore, it serves well to test new therapeutic agents, such as the safety of new vaccines. The aim of this review was to provide a systematic literature review on the most recent studies carried out on the topic. It presents numerous advantages of this type of animal model in tests of efficacy and safety of both animal and human vaccines, thus highlighting gains in time and cost reduction of research and analyzes.