Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Development ; 151(5)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38300806

RESUMEN

Defective tissue fusion during mammalian embryogenesis results in congenital anomalies, such as exencephaly, spina bifida and cleft lip and/or palate. The highly conserved transcription factor grainyhead-like 2 (Grhl2) is a crucial regulator of tissue fusion, with mouse models lacking GRHL2 function presenting with a fully penetrant open cranial neural tube, facial and abdominal clefting (abdominoschisis), and an open posterior neuropore. Here, we show that GRHL2 interacts with the soluble morphogen protein and bone morphogenetic protein (BMP) inhibitor noggin (NOG) to impact tissue fusion during development. The maxillary prominence epithelium in embryos lacking Grhl2 shows substantial morphological abnormalities and significant upregulation of NOG expression, together with aberrantly distributed pSMAD5-positive cells within the neural crest cell-derived maxillary prominence mesenchyme, indicative of disrupted BMP signalling. Reducing this elevated NOG expression (by generating Grhl2-/-;Nog+/- embryos) results in delayed embryonic lethality, partial tissue fusion rescue, and restoration of tissue form within the craniofacial epithelia. These data suggest that aberrant epithelial maintenance, partially regulated by noggin-mediated regulation of BMP-SMAD pathways, may underpin tissue fusion defects in Grhl2-/- mice.


Asunto(s)
Labio Leporino , Fisura del Paladar , Defectos del Tubo Neural , Animales , Ratones , Proteínas Morfogenéticas Óseas/metabolismo , Mamíferos/metabolismo , Tubo Neural/metabolismo , Receptores Nogo/metabolismo
2.
Methods Mol Biol ; 2746: 73-85, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38070081

RESUMEN

Whole-mount in situ hybridization is cable to harness the inherent advantages of zebrafish as a model organism for developmental biology, particularly when visualizing the formation of the neural tube, specifically at the level of the midbrain-hindbrain boundary. The size and transparency of developing zebrafish embryos allow for the visualization of neural markers in vivo along the length of the developing zebrafish central nervous system. In practice, this technique is useful for examining defects in neurulation and midbrain-hindbrain boundary formation that may arise following gene manipulation, for example, CRISPR mutagenesis. This method describes the process of embryo collection and preparation, RNA probe transcription, probe hybridization in vivo, as well as the process of probe detection and visualization.


Asunto(s)
Neurulación , Pez Cebra , Animales , Pez Cebra/genética , Regulación del Desarrollo de la Expresión Génica , Mesencéfalo , Rombencéfalo , Hibridación in Situ
3.
J Dev Biol ; 10(4)2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36412643

RESUMEN

Organophosphate (OP) insecticides are used to eliminate agricultural threats posed by insects, through inhibition of the neurotransmitter acetylcholinesterase (AChE). These potent neurotoxins are extremely efficacious in insect elimination, and as such, are the preferred agricultural insecticides worldwide. Despite their efficacy, however, estimates indicate that only 0.1% of organophosphates reach their desired target. Moreover, multiple studies have shown that OP exposure in both humans and animals can lead to aberrations in embryonic development, defects in childhood neurocognition, and substantial contribution to neurodegenerative diseases such as Alzheimer's and Motor Neurone Disease. Here, we review the current state of knowledge pertaining to organophosphate exposure on both embryonic development and/or subsequent neurological consequences on behaviour, paying particular attention to data gleaned using an excellent animal model, the zebrafish (Danio rerio).

4.
J Dev Biol ; 10(2)2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35735916

RESUMEN

As embryonic development proceeds, numerous organs need to coil, bend or fold in order to establish their final shape. Generally, this occurs so as to maximise the surface area for absorption or secretory functions (e.g., in the small and large intestines, kidney or epididymis); however, mechanisms of bending and shaping also occur in other structures, notably the midbrain-hindbrain boundary in some teleost fish models such as zebrafish. In this review, we will examine known genetic and molecular factors that operate to pattern complex, coiled structures, with a primary focus on the epididymis as an excellent model organ to examine coiling. We will also discuss genetic mechanisms involving coiling in the seminiferous tubules and intestine to establish the final form and function of these coiled structures in the mature organism.

5.
Int J Mol Sci ; 23(5)2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35269877

RESUMEN

Grainyhead-like (GRHL) factors are essential, highly conserved transcription factors (TFs) that regulate processes common to both natural cellular behaviours during embryogenesis, and de-regulation of growth and survival pathways in cancer. Serving to drive the transcription, and therefore activation of multiple co-ordinating pathways, the three GRHL family members (GRHL1-3) are a critical conduit for modulating the molecular landscape that guides cellular decision-making processes during proliferation, epithelial-mesenchymal transition (EMT) and migration. Animal models and in vitro approaches harbouring GRHL loss or gain-of-function are key research tools to understanding gene function, which gives confidence that resultant phenotypes and cellular behaviours may be translatable to humans. Critically, identifying and characterising the target genes to which these factors bind is also essential, as they allow us to discover and understand novel genetic pathways that could ultimately be used as targets for disease diagnosis, drug discovery and therapeutic strategies. GRHL1-3 and their transcriptional targets have been shown to drive comparable cellular processes in Drosophila, C. elegans, zebrafish and mice, and have recently also been implicated in the aetiology and/or progression of a number of human congenital disorders and cancers of epithelial origin. In this review, we will summarise the state of knowledge pertaining to the role of the GRHL family target genes in both development and cancer, primarily through understanding the genetic pathways transcriptionally regulated by these factors across disparate disease contexts.


Asunto(s)
Proteínas de Unión al ADN , Neoplasias , Proteínas Represoras/metabolismo , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Drosophila/metabolismo , Transición Epitelial-Mesenquimal/genética , Ratones , Neoplasias/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...