Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Adv Mater ; : e2400578, 2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38762779

RESUMEN

Organic photovoltaics (OPVs) based on non-fullerene acceptors (NFAs) have achieved a power conversion efficiency close to 20%. These NFA OPVs can generate free carriers efficiently despite a very small energy level offset at the donor/acceptor interface. Why these NFAs can enable efficient charge separation (CS) with low energy losses remains an open question. Here, the CS process in the PM6:Y6 bulk heterojunction is probed by time-resolved two-photon photoemission spectroscopy. It is found that the CS, the conversion from bound charge transfer (CT) excitons to free carriers, is an endothermic process with an enthalpy barrier of 0.15 eV. The CS can occur spontaneously despite being an endothermic process, which implies that it is driven by entropy. It is further argued that the morphology of the PM6:Y6 film and the anisotropic electron delocalization restrict the electron and hole wavefunctions within the CT exciton such that they can primarily contact each other through point-like junctions. This configuration can maximize the entropic driving force.

2.
Mater Horiz ; 11(3): 813-821, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38018228

RESUMEN

Despite the large binding energy of charge transfer (CT) excitons in type-II organic/2D heterostructures, it has been demonstrated that free carriers can be generated from CT excitons with a long lifetime. Using a model fluorinated zine phthalocyanine (F8ZnPc)/monolayer-WS2 interface, we find that CT excitons can dissociate spontaneously into free carriers despite it being an enthalpy-uphill process. Specifically, it is observed that CT excitons can gain an energy of 250 meV in 50 ps and dissociate into free carriers without any applied electric field. This observation is surprising because excited electrons typically lose energy to the environment and relax to lower energy states. We hypothesize that this abnormal enthalpy-uphill CT exciton dissociation process is driven by entropy gain. Kinetically, the entropic driving force can also reduce the rate for the reverse process - the conversion of free electron-hole pairs back to CT excitons. Hence, this mechanism can potentially explain the very long carrier lifetime observed in organic/2D heterostructures.

3.
ACS Nano ; 17(8): 7775-7786, 2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37042658

RESUMEN

The nanoscale moiré pattern formed at 2D transition-metal dichalcogenide crystal (TMDC) heterostructures provides periodic trapping sites for excitons, which is essential for realizing various exotic phases such as artificial exciton lattices, Bose-Einstein condensates, and exciton insulators. At organic molecule/TMDC heterostructures, similar periodic potentials can be formed via other degrees of freedom. Here, we utilize the structure deformability of a 2D molecular crystal as a degree of freedom to create a periodic nanoscale potential that can trap interlayer excitons (IXs). Specifically, two semiconducting molecules, PTCDI and PTCDA, which possess similar band gaps and ionization potentials but form different lattice structures on MoS2, are investigated. The PTCDI lattice on MoS2 is distorted geometrically, which lifts the degeneracy of the two molecules within the crystal's unit cell. The degeneracy lifting results in a spatial variation of the molecular orbital energy, with an amplitude and periodicity of ∼0.2 eV and ∼2 nm, respectively. On the other hand, no such energy variation is observed in PTCDA/MoS2, where the PTCDA lattice is much less distorted. The periodic variation in molecular orbital energies provides effective trapping sites for IXs. For IXs formed at PTCDI/MoS2, rapid spatial localization of the electron in the organic layer toward the interface is observed, which demonstrates the effectiveness of these interfacial IX traps.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...