Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Nat Commun ; 15(1): 2566, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38528014

RESUMEN

A promising metal-organic complex, iron (Fe)-NTMPA2, consisting of Fe(III) chloride and nitrilotri-(methylphosphonic acid) (NTMPA), is designed for use in aqueous iron redox flow batteries. A full-cell testing, where a concentrated Fe-NTMPA2 anolyte (0.67 M) is paired with a Fe-CN catholyte, demonstrates exceptional cycling stability over 1000 charge/discharge cycles, and noteworthy performances, including 96% capacity utilization, a minimal capacity fade rate of 0.0013% per cycle (1.3% over 1,000 cycles), high Coulombic efficiency and energy efficiency near 100% and 87%, respectively, all achieved under a current density of 20 mA·cm-². Furthermore, density functional theory unveils two potential coordination structures for Fe-NTMPA2 complexes, improving the understanding between the ligand coordination environment and electron transfer kinetics. When paired with a high redox potential Fe-Dcbpy/CN catholyte, 2,2'-bipyridine-4,4'-dicarboxylic (Dcbpy) acid and cyanide (CN) ligands, Fe-NTMPA2 demonstrates a notably elevated cell voltage of 1 V, enabling a practical energy density of up to 9 Wh/L.

3.
Rev Sci Instrum ; 95(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38170817

RESUMEN

Supercritical fluids (SCFs) can be found in a variety of environmental and industrial processes. They exhibit an anomalous thermodynamic behavior, which originates from their fluctuating heterogeneous micro-structure. Characterizing the dynamics of these fluids at high temperature and high pressure with nanometer spatial and picosecond temporal resolution has been very challenging. The advent of hard x-ray free electron lasers has enabled the development of novel multi-pulse ultrafast x-ray scattering techniques, such as x-ray photon correlation spectroscopy (XPCS) and x-ray pump x-ray probe (XPXP). These techniques offer new opportunities for resolving the ultrafast microscopic behavior in SCFs at unprecedented spatiotemporal resolution, unraveling the dynamics of their micro-structure. However, harnessing these capabilities requires a bespoke high-pressure and high-temperature sample system that is optimized to maximize signal intensity and address instrument-specific challenges, such as drift in beamline components, x-ray scattering background, and multi-x-ray-beam overlap. We present a pressure cell compatible with a wide range of SCFs with built-in optical access for XPCS and XPXP and discuss critical aspects of the pressure cell design, with a particular focus on the design optimization for XPCS.

4.
J Phys Chem A ; 127(46): 9684-9694, 2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-37938891

RESUMEN

We report computations of the vertical ionization potentials within the GW approximation of the near-complete series of first-row transition metal (V-Cu) aqua ions in their most common oxidation states, i.e., V3+, Cr3+, Cr2+, Mn2+, Fe3+, Fe2+, Co2+, Ni2+, and Cu2+. The d-orbital occupancy of these systems spans a broad range from d2 to d9. All of the structures were first optimized at the density functional theory level using a large cluster of explicit water molecules that are embedded in a continuum solvation model. Vertical ionization potentials were computed with the one-shot G0W0 approach on a range of transition metal ion clusters (6, 18, 40, and 60 explicit water molecules), wherein the convergence with respect to the basis set size was evaluated using the systems with 40 water molecules. We assess the results using three different density functional approximations as starting points for the vertical ionization potential calculations, namely, G0W0@PBE, G0W0@PBE0, and G0W0@r2SCAN. While the predicted ground-state structures are similar to all three exchange-correlation functionals, the vertical ionization potentials were in closer agreement with experiment when using the G0W0@PBE0 and G0W0@r2SCAN approaches, with the r2SCAN-based calculations being significantly less expensive. Computed bond distances and vertical ionization potentials for all structures are in good agreement with available experimental data.

5.
JACS Au ; 3(9): 2487-2497, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37772176

RESUMEN

In situ Al K-edge X-ray absorption near edge structure (XANES) and Extended X-ray absorption fine structure (EXAFS) spectroscopy in conjunction with ab initio molecular dynamics (AIMD) simulations show that adsorption of 1-propanol alters the structure of the Brønsted acid site through changes in the associated aluminum-oxygen tetrahedron in zeolite H-MFI. The decreasing intensity of the pre-edge signal of the in situ Al K-edge XANES spectra with increasing 1-propanol coverage shows that Al T-sites become more symmetric as the sorbed alcohol molecules form monomers, dimers, and trimers. The adsorption of monomeric 1-propanol on Brønsted acid sites reduces the distortion of the associated Al T-site, shortens the Al-O distance, and causes the formation of a Zundel-like structure. With dimeric and trimeric alcohol clusters, the zeolite proton is fully transferred to the alcohols and the aluminum-oxygen tetrahedron becomes fully symmetric. The subtle changes in Al-K-edge XANES in the presence of sorbate structures, with the use of theory, are used to probe the local zeolite structures and provide a basis to predict the population and chemical state of the sorbed species.

6.
J Am Chem Soc ; 145(32): 17710-17719, 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37545395

RESUMEN

The stoichiometric conversion of methane to methanol by Cu-exchanged zeolites can be brought to highest yields by the presence of extraframework Al and high CH4 chemical potentials. Combining theory and experiments, the differences in chemical reactivity of monometallic Cu-oxo and bimetallic Cu-Al-oxo nanoclusters stabilized in zeolite mordenite (MOR) are investigated. Cu-L3 edge X-ray absorption near-edge structure (XANES), infrared (IR), and ultraviolet-visible (UV-vis) spectroscopies, in combination with CH4 oxidation activity tests, support the presence of two types of active clusters in MOR and allow quantification of the relative proportions of each type in dependence of the Cu concentration. Ab initio molecular dynamics (MD) calculations and thermodynamic analyses indicate that the superior performance of materials enriched in Cu-Al-oxo clusters is related to the activity of two µ-oxo bridges in the cluster. Replacing H2O with ethanol in the product extraction step led to the formation of ethyl methyl ether, expanding this way the applicability of these materials for the activation and functionalization of CH4. We show that competition between different ion-exchanged metal-oxo structures during the synthesis of Cu-exchanged zeolites determines the formation of active species, and this provides guidelines for the synthesis of highly active materials for CH4 activation and functionalization.

7.
Phys Chem Chem Phys ; 25(34): 22650-22661, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37592924

RESUMEN

The emergence of cation-anion species, or contact ion pairs, is fundamental to understanding the physical properties of aqueous solutions when moving from the ideal, low-concentration limit to the manifestly non-ideal limits of very high solute concentration or constituent ion activity. We focus here on Zn halide solutions both as a model system and also as an exemplar of the applications spanning from (i) electrical energy storage via the paradigm of water in salt electrolyte (WiSE) to (ii) the physical chemistry of brines in geochemistry to (iii) the long-standing problem of nucleation. Using a combination of experimental and theoretical approaches we quantify the halide coordination number and changing coordination geometry without embedded use of theoretical equilibrium constants. These results and the associated methods, notably including the use of valence-to-core X-ray emission spectroscopy, provide new insights into the Zn halide system and new research directions in the physical chemistry of concentrated electrolytes.

8.
Inorg Chem ; 62(13): 5207-5218, 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-36940386

RESUMEN

Lanthanide-ligand complexes are key components of technological applications, and their properties depend on their structures in the solution phase, which are challenging to resolve experimentally or computationally. The coordination structure of the Eu3+ ion in different coordination environments in acetonitrile is examined using ab initio molecular dynamics (AIMD) simulations and extended X-ray absorption fine structure (EXAFS) spectroscopy. AIMD simulations are conducted for the solvated Eu3+ ion in acetonitrile, both with or without a terpyridyl ligand, and in the presence of either triflate or nitrate counterions. EXAFS spectra are calculated directly from AIMD simulations and then compared to experimentally measured EXAFS spectra. In acetonitrile solution, both nitrate and triflate anions are shown to coordinate directly to the Eu3+ ion forming either ten- or eight-coordinate solvent complexes where the counterions are binding as bidentate or monodentate structures, respectively. Coordination of a terpyridyl ligand to the Eu3+ ion limits the available binding sites for the solvent and anions. In certain cases, the terpyridyl ligand excludes any solvent binding and limits the number of coordinated anions. The solution structure of the Eu-terpyridyl complex with nitrate counterions is shown to have a similar arrangement of Eu3+ coordinating molecules as the crystal structure. This study illustrates how a combination of AIMD and EXAFS can be used to determine how ligands, solvent, and counterions coordinate with the lanthanide ions in solution.

9.
J Phys Chem B ; 126(41): 8266-8278, 2022 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-36214512

RESUMEN

Ion-water interactions play a central role in determining the properties of aqueous systems in a wide range of environments. However, a quantitative understanding of how the hydration properties of ions evolve from small aqueous clusters to bulk solutions and interfaces remains elusive. Here, we introduce the second generation of data-driven many-body energy (MB-nrg) potential energy functions (PEFs) representing bromide-water and iodide-water interactions. The MB-nrg PEFs use permutationally invariant polynomials to reproduce two-body and three-body energies calculated at the coupled cluster level of theory, and implicitly represent all higher-body energies using classical many-body polarization. A systematic analysis of the hydration structure of small Br-(H2O)n and I-(H2O)n clusters demonstrates that the MB-nrg PEFs predict interaction energies in quantitative agreement with "gold standard" coupled cluster reference values. Importantly, when used in molecular dynamics simulations carried out in the isothermal-isobaric ensemble for single bromide and iodide ions in liquid water, the MB-nrg PEFs predict extended X-ray absorption fine structure (EXAFS) spectra that accurately reproduce the experimental spectra, which thus allows for characterizing the hydration structure of the two ions with a high level of confidence.


Asunto(s)
Bromuros , Yoduros , Simulación de Dinámica Molecular , Agua/química , Iones/química
10.
Inorg Chem ; 61(38): 14987-14996, 2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36099562

RESUMEN

The aqueous hydration structure of the Bi3+ ion is probed using a combination of extended X-ray absorption fine structure (EXAFS) spectroscopy and density functional theory (DFT) simulations of ion-water clusters and condensed-phase solutions. Anomalous features in the EXAFS spectra are found to be associated with a highly asymmetric first-solvent water shell. The aqueous chemistry and structure of the Bi3+ ion are dramatically controlled by the water stabilization of a lone-pair electronic state involving the mixed 6s and 6p orbitals. This leads to a distinct multimodal distribution of water molecules in the first shell that are separated by about 0.2 Å. The lone-pair structure is stabilized by a collective response of multiple waters that are localized near the lone-pair anti-bonding site. The findings indicate that the lone-pair stereochemistry of aqueous Bi3+ ions plays a major role in the binding of water and ligands in aqueous solutions.

11.
J Phys Chem Lett ; 13(27): 6323-6330, 2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35793526

RESUMEN

The solvation structure of transition metal ions is important for applications in geochemistry, biochemistry, energy storage, and environmental chemistry. We study the X-ray absorption pre-edge and near-edge spectra at the K-edge of a nearly complete series of hydrated first-row transition metal ions with d orbital occupancy from d2 to d10. We optimize all of the structures at the density functional theory (DFT) level with explicit solvation and then compute the pre-edge X-ray absorption spectra with time-dependent DFT (TDDFT) and restricted active space second-order perturbation theory (RASPT2). TDDFT provides accurate results for spectra that are dominated by single excitations, while RASPT2 correctly distinguishes between singly and doubly excited states with quantitative accuracy compared with experiment. We analyze the pre-edge features for each metal ion to reveal the impact of the variations in d orbital occupancy on the first-shell coordination environment. We also report the lowest-energy ligand field d-d transitions using complete active space second-order perturbation theory.


Asunto(s)
Elementos de Transición , Iones , Ligandos , Elementos de Transición/química , Espectroscopía de Absorción de Rayos X , Rayos X
12.
Inorg Chem ; 61(1): 287-294, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-34919399

RESUMEN

In liquid, temperature affects the structures of lanthanide complexes in multiple ways that depend upon complex interactions between ligands, anions, and solvent molecules. The relative simplicity of lanthanide aqua ions (Ln3+) make them well suited to determine how temperature induces structural changes in lanthanide complexes. We performed a combination of ab initio molecular dynamics (AIMD) simulations and extended X-ray absorption fine structure (EXAFS) measurements, both at 25 and 90 °C, to determine how temperature affects the first- and second-coordination spheres of three Ln3+ (Ce3+, Sm3+, and Lu3+) aqua ions. AIMD simulations show first lanthanide coordination spheres that are similar at 25 and 90 °C, more so for the Lu3+ ion that remains as eight-coordinate than for the Ce3+ and Sm3+ ions that change their preferred coordination number from nine (at 25 °C) to eight (at 90 °C). The measured EXAFS spectra are very similar at 25 and 90 °C, for the Ce3+, Sm3+, and Lu3+ ions, suggesting that the dynamical disorder of the Ln3+ ions in liquid water is sufficient such that temperature-induced changes do not clearly manifest changes in the structure of the three ions. Both AIMD simulations and EXAFS measurements show very similar structures of the first coordination sphere of the Lu3+ ion at 25 and 90 °C.

13.
JACS Au ; 1(9): 1412-1421, 2021 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-34604851

RESUMEN

Cu-zeolites are able to directly convert methane to methanol via a three-step process using O2 as oxidant. Among the different zeolite topologies, Cu-exchanged mordenite (MOR) shows the highest methanol yields, attributed to a preferential formation of active Cu-oxo species in its 8-MR pores. The presence of extra-framework or partially detached Al species entrained in the micropores of MOR leads to the formation of nearly homotopic redox active Cu-Al-oxo nanoclusters with the ability to activate CH4. Studies of the activity of these sites together with characterization by 27Al NMR and IR spectroscopy leads to the conclusion that the active species are located in the 8-MR side pockets of MOR, and it consists of two Cu ions and one Al linked by O. This Cu-Al-oxo cluster shows an activity per Cu in methane oxidation significantly higher than of any previously reported active Cu-oxo species. In order to determine unambiguously the structure of the active Cu-Al-oxo cluster, we combine experimental XANES of Cu K- and L-edges, Cu K-edge HERFD-XANES, and Cu K-edge EXAFS with TDDFT and AIMD-assisted simulations. Our results provide evidence of a [Cu2AlO3]2+ cluster exchanged on MOR Al pairs that is able to oxidize up to two methane molecules per cluster at ambient pressure.

14.
Angew Chem Int Ed Engl ; 60(35): 19144-19154, 2021 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-34062043

RESUMEN

We investigated the material properties of Cremonese soundboards using a wide range of spectroscopic, microscopic, and chemical techniques. We found similar types of spruce in Cremonese soundboards as in modern instruments, but Cremonese spruces exhibit unnatural elemental compositions and oxidation patterns that suggest artificial manipulation. Combining analytical data and historical information, we may deduce the minerals being added and their potential functions-borax and metal sulfates for fungal suppression, table salt for moisture control, alum for molecular crosslinking, and potash or quicklime for alkaline treatment. The overall purpose may have been wood preservation or acoustic tuning. Hemicellulose fragmentation and altered cellulose nanostructures are observed in heavily treated Stradivari specimens, which show diminished second-harmonic generation signals. Guarneri's practice of crosslinking wood fibers via aluminum coordination may also affect mechanical and acoustic properties. Our data suggest that old masters undertook materials engineering experiments to produce soundboards with unique properties.

15.
J Am Chem Soc ; 143(14): 5540-5549, 2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33819019

RESUMEN

Single-atom catalysts are often reported to have catalytic properties that surpass those of nanoparticles, while a direct comparison of sites common and different for both is lacking. Here we show that single atoms of Pt-group metals embedded into the surface of Fe3O4 have a greatly enhanced interaction strength with CO2 compared with the Fe3O4 surface. The strong CO2 adsorption on single Rh atoms and corresponding low activation energies lead to 2 orders of magnitude higher conversion rates of CO2 compared to Rh nanoparticles. This high activity of single atoms stems from the partially oxidic state imposed by their coordination to the support. Fe3O4-supported Rh nanoparticles follow the behavior of single atoms for CO2 interaction and reduction, which is attributed to the dominating role of partially oxidic sites at the Fe3O4-Rh interface. Thus, we show a likely common catalytic chemistry for two kinds of materials thought to be different, and we show that single atoms of Pt-group metals on Fe3O4 are especially successful materials for catalyzed reactions that depend primarily upon sites with the metal-O-Fe environment.

16.
Inorg Chem ; 60(5): 3117-3130, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33544594

RESUMEN

To resolve the fleeting structures of lanthanide Ln3+ aqua ions in solution, we (i) performed the first ab initio molecular dynamics (AIMD) simulations of the entire series of Ln3+ aqua ions in explicit water solvent using pseudopotentials and basis sets recently optimized for lanthanides and (ii) measured the symmetry of the hydrating waters about Ln3+ ions (Nd3+, Dy3+, Er3+, Lu3+) for the first time with extended X-ray absorption fine structure (EXAFS). EXAFS spectra were measured experimentally and generated from AIMD trajectories to directly compare simulation, which concurrently considers the electronic structure and the atomic dynamics in solution, with experiment. We performed a comprehensive evaluation of EXAFS multiple-scattering analysis (up to 6.5 Å) to measure Ln-O distances and angular correlations (i.e., symmetry) and elucidate the molecular geometry of the first hydration shell. This evaluation, in combination with symmetry-dependent L3- and L1-edge spectral analysis, shows that the AIMD simulations remarkably reproduces the experimental EXAFS data. The error in the predicted Ln-O distances is less than 0.07 Å for the later lanthanides, while we observed excellent agreement with predicted distances within experimental uncertainty for the early lanthanides. Our analysis revealed a dynamic, symmetrically disordered first coordination shell, which does not conform to a single molecular geometry for most lanthanides. This work sheds critical light on the highly elusive coordination geometry of the Ln3+ aqua ions.

17.
iScience ; 23(12): 101814, 2020 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-33305178

RESUMEN

In this perspective, we highlight the role of surface heterogeneity in electrosynthesis reactions. Heterogeneities may come in the form of distinct crystallographic facets, boundaries between facets or grains, or point defects. We approach this topic from a foundation of surface science, where signatures from model systems provide understanding of observations on more complex and higher-surface-area materials. In parallel, probe-based techniques can inform directly on spatial variation across electrode surfaces. We call attention to the role spectroscopy can play in understanding the impact of these heterogeneities in electrocatalyst activity and selectivity, particularly where these surface features have effects extending into the electrolyte double layer.

18.
Nat Commun ; 11(1): 5849, 2020 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-33208734

RESUMEN

Molecular interactions with both oxides and metals are essential for heterogenous catalysis, leading to remarkable synergistic impacts on activity and selectivity. Here, we show that the direct link between the two phases (and not merely being together) is required to selectively hydrogenate CO2 to methanol on catalysts containing Cu and ZrO2. Materials consisting of isolated Cu particles or atomically dispersed Cu-O-Zr sites only catalyze the reverse water-gas shift reaction. In contrast, a metal organic framework structure (UiO-66) with Cu nanoparticles occupying missing-linker defects maximizes the fraction of metallic Cu interfaced to ZrO2 nodes leading to a material with high adsorption capacity for CO2 and high activity and selectivity for low-temperature methanol synthesis.

19.
Nat Commun ; 11(1): 3269, 2020 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-32601487

RESUMEN

Key chemical transformations require metal and redox sites in proximity at interfaces; however, in traditional oxide-supported materials, this requirement is met only at the perimeters of metal nanoparticles. We report that galvanic replacement can produce inverse FeOx/metal nanostructures in which the concentration of oxide species adjoining metal domains is maximal. The synthesis involves reductive deposition of rhodium or platinum and oxidation of Fe2+ from magnetite (Fe3O4). We discovered a parallel dissolution and adsorption of Fe2+ onto the metal, yielding inverse FeOx-coated metal nanoparticles. This nanostructure exhibits the intrinsic activity in selective CO2 reduction that simple metal nanoparticles have only at interfaces with the support. By enabling a simple way to control the surface functionality of metal particles, our approach is not only scalable but also enables a versatile palette for catalyst design.

20.
Chemistry ; 26(34): 7515, 2020 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-32452593

RESUMEN

Invited for the cover of this issue is the collaborative team of researchers from TU Munich, PNNL and TU Delft. Read the full text of the article at 10.1002/chem.202000772.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...