Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Virol ; 97(11): e0087823, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37905840

RESUMEN

IMPORTANCE: Remodeling of the cellular endomembrane system by viruses allows for efficient and coordinated replication of the viral genome in distinct subcellular compartments termed replication organelles. As a critical step in the viral life cycle, replication organelle formation is an attractive target for therapeutic intervention, but factors central to this process are only partially understood. In this study, we corroborate that two viral proteins, nsp3 and nsp4, are the major drivers of membrane remodeling in SARS-CoV-2 infection. We further report a number of host cell factors interacting with these viral proteins and supporting the viral replication cycle, some of them by contributing to the formation of the SARS-CoV-2 replication organelle.


Asunto(s)
COVID-19 , SARS-CoV-2 , Proteínas no Estructurales Virales , Replicación Viral , Humanos , Orgánulos/metabolismo , Proteómica , SARS-CoV-2/fisiología , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo
3.
J Microsc ; 291(3): 248-255, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37433616

RESUMEN

Soft X-ray tomography (SXT) is an imaging technique to visualise whole cells without fixation, staining, and sectioning. For SXT imaging, cells are cryopreserved and imaged at cryogenic conditions. Such 'near-to-native' state imaging is in high demand and initiated the development of the laboratory table-top SXT microscope. As many laboratories do not have access to cryogenic equipment, we asked ourselves whether SXT imaging is feasible on dry specimens. This paper shows how the dehydration of cells can be used as an alternative sample preparation to obtain ultrastructure information. We compare different dehydration processes on mouse embryonic fibroblasts in terms of ultrastructural preservation and shrinkage. Based on this analysis, we chose critical point (CPD) dried cells for SXT imaging. In comparison to cryopreserved and air-dried cells, CPD dehydrated cells show high structural integrity although with about 3-7 times higher X-ray absorption for cellular organelles. As the difference in X-ray absorption values between organelles is preserved, 3D anatomy of CPD-dried cells can be segmented and analysed, demonstrating the applicability of CPD-dried sample preparation for SXT imaging. LAY DESCRIPTION: Soft X-ray tomography (SXT) is an imaging technique that allows to see the internal structures of cells without the need for special treatments like fixation or staining. Typically, SXT imaging involves freezing and imaging cells at very low temperatures. However, since many labs lack the necessary equipment, we explored whether SXT imaging could be done on dry samples instead. We compared different dehydration methods and found that critical point drying (CPD) was the most promising for SXT imaging. CPD-dried cells showed high structural integrity, although they absorbed more X-rays than hydrated cells, demonstrating that CPD-dried sample preparation is a viable alternative for SXT imaging.


Asunto(s)
Deshidratación , Imagenología Tridimensional , Animales , Ratones , Imagenología Tridimensional/métodos , Fibroblastos , Tomografía por Rayos X/métodos , Microscopía
4.
Mol Cell ; 83(14): 2559-2577.e8, 2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37421942

RESUMEN

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) remodels the endoplasmic reticulum (ER) to form replication organelles, leading to ER stress and unfolded protein response (UPR). However, the role of specific UPR pathways in infection remains unclear. Here, we found that SARS-CoV-2 infection causes marginal activation of signaling sensor IRE1α leading to its phosphorylation, clustering in the form of dense ER-membrane rearrangements with embedded membrane openings, and XBP1 splicing. By investigating the factors regulated by IRE1α-XBP1 during SARS-CoV-2 infection, we identified stress-activated kinase NUAK2 as a novel host-dependency factor for SARS-CoV-2, HCoV-229E, and MERS-CoV entry. Reducing NUAK2 abundance or kinase activity impaired SARS-CoV-2 particle binding and internalization by decreasing cell surface levels of viral receptors and viral trafficking likely by modulating the actin cytoskeleton. IRE1α-dependent NUAK2 levels were elevated in SARS-CoV-2-infected and bystander non-infected cells, promoting viral spread by maintaining ACE2 cell surface levels and facilitating virion binding to bystander cells.


Asunto(s)
Proteínas Serina-Treonina Quinasas , SARS-CoV-2 , Internalización del Virus , Humanos , Quinasas de la Proteína-Quinasa Activada por el AMP , Proteínas Quinasas Activadas por AMP/metabolismo , COVID-19/metabolismo , COVID-19/patología , COVID-19/virología , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , SARS-CoV-2/fisiología , Respuesta de Proteína Desplegada
5.
PLoS Pathog ; 19(7): e1011052, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37506130

RESUMEN

Liver-generated plasma Apolipoprotein E (ApoE)-containing lipoproteins (LPs) (ApoE-LPs) play central roles in lipid transport and metabolism. Perturbations of ApoE can result in several metabolic disorders and ApoE genotypes have been associated with multiple diseases. ApoE is synthesized at the endoplasmic reticulum and transported to the Golgi apparatus for LP assembly; however, the ApoE-LPs transport pathway from there to the plasma membrane is largely unknown. Here, we established an integrative imaging approach based on a fully functional fluorescently tagged ApoE. We found that newly synthesized ApoE-LPs accumulate in CD63-positive endosomes of hepatocytes. In addition, we observed the co-egress of ApoE-LPs and CD63-positive intraluminal vesicles (ILVs), which are precursors of extracellular vesicles (EVs), along the late endosomal trafficking route in a microtubule-dependent manner. A fraction of ApoE-LPs associated with CD63-positive EVs appears to be co-transmitted from cell to cell. Given the important role of ApoE in viral infections, we employed as well-studied model the hepatitis C virus (HCV) and found that the viral replicase component nonstructural protein 5A (NS5A) is enriched in ApoE-containing ILVs. Interaction between NS5A and ApoE is required for the efficient release of ILVs containing HCV RNA. These vesicles are transported along the endosomal ApoE egress pathway. Taken together, our data argue for endosomal egress and transmission of hepatic ApoE-LPs, a pathway that is hijacked by HCV. Given the more general role of EV-mediated cell-to-cell communication, these insights provide new starting points for research into the pathophysiology of ApoE-related metabolic and infection-related disorders.


Asunto(s)
Hepacivirus , Hepatitis C , Humanos , Hepacivirus/fisiología , Lipopolisacáridos/metabolismo , Ensamble de Virus/fisiología , Endosomas/metabolismo , Apolipoproteínas E/metabolismo
6.
Sci Rep ; 12(1): 10726, 2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35750882

RESUMEN

Neurofilament light chain (NfL), released during central nervous injury, has evolved as a powerful serum marker of disease severity in many neurological disorders, including infectious diseases. So far NfL has not been assessed in cerebral malaria in human or its rodent model experimental cerebral malaria (ECM), a disease that can lead to fatal brain edema or reversible brain edema. In this study we assessed if NfL serum levels can also grade disease severity in an ECM mouse model with reversible (n = 11) and irreversible edema (n = 10). Blood-brain-barrier disruption and brain volume were determined by magnetic resonance imaging. Neurofilament density volume as well as structural integrity were examined by electron microscopy in regions of most severe brain damage (olfactory bulb (OB), cortex and brainstem). NfL plasma levels in mice with irreversible edema (317.0 ± 45.01 pg/ml) or reversible edema (528.3 ± 125.4 pg/ml) were significantly increased compared to controls (103.4 ± 25.78 pg/ml) by three to five fold, but did not differ significantly in mice with reversible or irreversible edema. In both reversible and irreversible edema, the brain region most affected was the OB with highest level of blood-brain-barrier disruption and most pronounced decrease in neurofilament density volume, which correlated with NfL plasma levels (r = - 0.68, p = 0.045). In cortical and brainstem regions neurofilament density was only decreased in mice with irreversible edema and strongest in the brainstem. In reversible edema NfL plasma levels, MRI findings and neurofilament volume density normalized at 3 months' follow-up. In conclusion, NfL plasma levels are elevated during ECM confirming brain damage. However, NfL plasma levels fail short on reliably indicating on the final outcomes in the acute disease stage that could be either fatal or reversible. Increased levels of plasma NfL during the acute disease stage are thus likely driven by the anatomical location of brain damage, the olfactory bulb, a region that serves as cerebral draining pathway into the nasal lymphatics.


Asunto(s)
Edema Encefálico , Lesiones Encefálicas , Malaria Cerebral , Enfermedad Aguda , Animales , Biomarcadores , Encéfalo/diagnóstico por imagen , Edema Encefálico/diagnóstico por imagen , Filamentos Intermedios , Malaria Cerebral/diagnóstico por imagen , Ratones , Proteínas de Neurofilamentos
7.
EMBO Rep ; 23(7): e54719, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35403820

RESUMEN

During transmission of malaria-causing parasites from mosquitoes to mammals, Plasmodium sporozoites migrate rapidly in the skin to search for a blood vessel. The high migratory speed and narrow passages taken by the parasites suggest considerable strain on the sporozoites to maintain their shape. Here, we show that the membrane-associated protein, concavin, is important for the maintenance of the Plasmodium sporozoite shape inside salivary glands of mosquitoes and during migration in the skin. Concavin-GFP localizes at the cytoplasmic periphery and concavin(-) sporozoites progressively round up upon entry of salivary glands. Rounded concavin(-) sporozoites fail to pass through the narrow salivary ducts and are rarely ejected by mosquitoes, while normally shaped concavin(-) sporozoites are transmitted. Strikingly, motile concavin(-) sporozoites disintegrate while migrating through the skin leading to parasite arrest or death and decreased transmission efficiency. Collectively, we suggest that concavin contributes to cell shape maintenance by riveting the plasma membrane to the subtending inner membrane complex. Interfering with cell shape maintenance pathways might hence provide a new strategy to prevent a malaria infection.


Asunto(s)
Anopheles , Malaria , Parásitos , Plasmodium , Animales , Anopheles/parasitología , Mamíferos , Esporozoítos/metabolismo
8.
Sci Adv ; 8(13): eabj5362, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35353560

RESUMEN

Malaria-causing parasites proliferate within erythrocytes through schizogony, forming multinucleated stages before cellularization. Nuclear multiplication does not follow a strict geometric 2n progression, and each proliferative cycle produces a variable number of progeny. Here, by tracking nuclei and DNA replication, we show that individual nuclei replicate their DNA at different times, despite residing in a shared cytoplasm. Extrapolating from experimental data using mathematical modeling, we provide strong indication that a limiting factor exists, which slows down the nuclear multiplication rate. Consistent with this prediction, our data show that temporally overlapping DNA replication events were significantly slower than partially overlapping or nonoverlapping events. Our findings suggest the existence of evolutionary pressure that selects for asynchronous DNA replication, balancing available resources with rapid pathogen proliferation.


Asunto(s)
Núcleo Celular , Plasmodium falciparum , División Celular , Replicación del ADN , Eritrocitos/parasitología , Plasmodium falciparum/genética
9.
Life Sci Alliance ; 4(11)2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34535568

RESUMEN

Proliferation of Plasmodium falciparum in red blood cells is the cause of malaria and is underpinned by an unconventional cell division mode, called schizogony. Contrary to model organisms, P. falciparum replicates by multiple rounds of nuclear divisions that are not interrupted by cytokinesis. Organization and dynamics of critical nuclear division factors remain poorly understood. Centriolar plaques, the centrosomes of P. falciparum, serve as microtubule organizing centers and have an acentriolar, amorphous structure. The small size of parasite nuclei has precluded detailed analysis of intranuclear microtubule organization by classical fluorescence microscopy. We apply recently developed super-resolution and time-lapse imaging protocols to describe microtubule reconfiguration during schizogony. Analysis of centrin, nuclear pore, and microtubule positioning reveals two distinct compartments of the centriolar plaque. Whereas centrin is extranuclear, we confirm by correlative light and electron tomography that microtubules are nucleated in a previously unknown and extended intranuclear compartment, which is devoid of chromatin but protein-dense. This study generates a working model for an unconventional centrosome and enables a better understanding about the diversity of eukaryotic cell division.


Asunto(s)
Centrosoma/fisiología , Espacio Intranuclear/metabolismo , Microtúbulos/metabolismo , División Celular/fisiología , Línea Celular , Centrosoma/metabolismo , Cromatina , Citocinesis , Humanos , Centro Organizador de los Microtúbulos/fisiología , Microtúbulos/fisiología , Poro Nuclear , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo
10.
Polymers (Basel) ; 13(16)2021 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-34451349

RESUMEN

Anastomotic leakage is a frequent complication of intestinal surgery and a major source of surgical morbidity. The timing of anastomotic failures suggests that leaks are the result of inadequate mechanical support during the vulnerable phase of wound healing. To identify a biomaterial with physical and mechanical properties appropriate for assisted anastomotic healing, we studied the adhesive properties of the plant-derived structural heteropolysaccharide called pectin. Specifically, we examined high methoxyl citrus pectin films at water contents between 17-24% for their adhesivity to ex vivo porcine small bowel serosa. In assays of tensile adhesion strength, pectin demonstrated significantly greater adhesivity to the serosa than either nanocellulose fiber (NCF) films or pressure sensitive adhesives (PSA) (p < 0.001). Similarly, in assays of shear resistance, pectin demonstrated significantly greater adhesivity to the serosa than either NCF films or PSA (p < 0.001). Finally, the pectin films were capable of effectively sealing linear enterotomies in a bowel simulacrum as well as an ex vivo bowel segment. We conclude that pectin is a biomaterial with physical and adhesive properties capable of facilitating anastomotic healing after intestinal surgery.

11.
Nat Commun ; 11(1): 903, 2020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-32060285

RESUMEN

Centrosomes are essential organelles with functions in microtubule organization that duplicate once per cell cycle. The first step of centrosome duplication is the daughter centriole formation followed by the pericentriolar material recruitment to this centriole. This maturation step was termed centriole-to-centrosome conversion. It was proposed that CEP295-dependent recruitment of pericentriolar proteins drives centriole conversion. Here we show, based on the analysis of proteins that promote centriole biogenesis, that the developing centriole structure helps drive centriole conversion. Depletion of the luminal centriole protein CEP44 that binds to the A-microtubules and interacts with POC1B affecting centriole structure and centriole conversion, despite CEP295 binding to centrioles. Impairment of POC1B, TUBE1 or TUBD1, which disturbs integrity of centriole microtubules, also prevents centriole-to-centrosome conversion. We propose that the CEP295, CEP44, POC1B, TUBE1 and TUBD1 centriole biogenesis pathway that functions in the centriole lumen and on the cytoplasmic side is essential for the centriole-to-centrosome conversion.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Centriolos/metabolismo , Centrosoma/metabolismo , Proteínas de Ciclo Celular/genética , Centriolos/genética , Humanos , Microtúbulos/genética , Microtúbulos/metabolismo , Unión Proteica , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
12.
mSphere ; 5(1)2020 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-31996424

RESUMEN

Saccharomyces cerevisiae has been frequently used to study biogenesis, functionality, and intracellular transport of various renal proteins, including ion channels, solute transporters, and aquaporins. Specific mutations in genes encoding most of these renal proteins affect kidney function in such a way that various disease phenotypes ultimately occur. In this context, human kidney anion exchanger 1 (kAE1) represents an important bicarbonate/chloride exchanger which maintains the acid-base homeostasis in the human body. Malfunctions in kAE1 lead to a pathological phenotype known as distal renal tubular acidosis (dRTA). Here, we evaluated the potential of baker's yeast as a model system to investigate different cellular aspects of kAE1 physiology. For the first time, we successfully expressed yeast codon-optimized full-length versions of tagged and untagged wild-type kAE1 and demonstrated their partial localization at the yeast plasma membrane (PM). Finally, pH and chloride measurements further suggest biological activity of full-length kAE1, emphasizing the potential of S. cerevisiae as a model system for studying trafficking, activity, and/or degradation of mammalian ion channels and transporters such as kAE1 in the future.IMPORTANCE Distal renal tubular acidosis (dRTA) is a common kidney dysfunction characterized by impaired acid secretion via urine. Previous studies revealed that α-intercalated cells of dRTA patients express mutated forms of human kidney anion exchanger 1 (kAE1) which result in inefficient plasma membrane targeting or diminished expression levels of kAE1. However, the precise dRTA-causing processes are inadequately understood, and alternative model systems are helpful tools to address kAE1-related questions in a fast and inexpensive way. In contrast to a previous study, we successfully expressed full-length kAE1 in Saccharomyces cerevisiae Using advanced microscopy techniques as well as different biochemical and functionality assays, plasma membrane localization and biological activity were confirmed for the heterologously expressed anion transporter. These findings represent first important steps to use the potential of yeast as a model organism for studying trafficking, activity, and degradation of kAE1 and its mutant variants in the future.


Asunto(s)
Proteína 1 de Intercambio de Anión de Eritrocito/fisiología , Membrana Celular/fisiología , Saccharomyces cerevisiae , Proteína 1 de Intercambio de Anión de Eritrocito/genética , Transporte Biológico , Vectores Genéticos , Microorganismos Modificados Genéticamente , Plásmidos , Saccharomyces cerevisiae/genética , Transformación Genética
13.
EMBO J ; 39(2): e102586, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31802527

RESUMEN

ER-phagy, the selective autophagy of endoplasmic reticulum (ER), safeguards organelle homeostasis by eliminating misfolded proteins and regulating ER size. ER-phagy can occur by macroautophagic and microautophagic mechanisms. While dedicated machinery for macro-ER-phagy has been discovered, the molecules and mechanisms mediating micro-ER-phagy remain unknown. Here, we first show that micro-ER-phagy in yeast involves the conversion of stacked cisternal ER into multilamellar ER whorls during microautophagic uptake into lysosomes. Second, we identify the conserved Nem1-Spo7 phosphatase complex and the ESCRT machinery as key components for micro-ER-phagy. Third, we demonstrate that macro- and micro-ER-phagy are parallel pathways with distinct molecular requirements. Finally, we provide evidence that the ESCRT machinery directly functions in scission of the lysosomal membrane to complete the microautophagic uptake of ER. These findings establish a framework for a mechanistic understanding of micro-ER-phagy and, thus, a comprehensive appreciation of the role of autophagy in ER homeostasis.


Asunto(s)
Estrés del Retículo Endoplásmico/fisiología , Retículo Endoplásmico/fisiología , Complejos de Clasificación Endosomal Requeridos para el Transporte , Membranas Intracelulares/metabolismo , Microautofagia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Homeostasis , Proteínas de la Membrana/metabolismo , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/metabolismo
14.
Nat Cell Biol ; 21(9): 1138-1151, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31481795

RESUMEN

One of the first steps in mitotic spindle assembly is the dissolution of the centrosome linker followed by centrosome separation driven by EG5, a tetrameric plus-end-directed member of the kinesin-5 family. However, even in the absence of the centrosome linker, the two centrosomes are kept together by an ill-defined microtubule-dependent mechanism. Here we show that KIFC3, a minus-end-directed kinesin-14, provides microtubule-based centrosome cohesion. KIFC3 forms a homotetramer that pulls the two centrosomes together via a specific microtubule network. At mitotic onset, KIFC3 activity becomes the main driving force of centrosome cohesion to prevent premature spindle formation after linker dissolution as it counteracts the increasing EG5-driven pushing forces. KIFC3 is eventually inactivated by NEver in mitosis-related Kinase 2 (NEK2) to enable EG5-driven bipolar spindle assembly. We further show that persistent centrosome cohesion in mitosis leads to chromosome mis-segregation. Our findings reveal a mechanism of spindle assembly that is evolutionary conserved from yeast to humans.


Asunto(s)
Centrosoma/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Huso Acromático/metabolismo , Segregación Cromosómica/fisiología , Células HeLa , Humanos , Cinesinas/genética , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Mitosis , Quinasas Relacionadas con NIMA/metabolismo
15.
Cell Rep ; 27(12): 3602-3617.e5, 2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31216478

RESUMEN

The hepatitis C virus (HCV) is a major cause of chronic liver disease, affecting around 71 million people worldwide. Viral RNA replication occurs in a membranous compartment composed of double-membrane vesicles (DMVs), whereas virus particles are thought to form by budding into the endoplasmic reticulum (ER). It is unknown how these steps are orchestrated in space and time. Here, we established an imaging system to visualize HCV structural and replicase proteins in live cells and with high resolution. We determined the conditions for the recruitment of viral proteins to putative assembly sites and studied the dynamics of this event and the underlying ultrastructure. Most notable was the selective recruitment of ER membranes around lipid droplets where structural proteins and the viral replicase colocalize. Moreover, ER membranes wrapping lipid droplets were decorated with double membrane vesicles, providing a topological map of how HCV might coordinate the steps of viral replication and virion assembly.


Asunto(s)
Hepacivirus/fisiología , Hepatitis C/virología , Membranas Intracelulares/virología , Gotas Lipídicas/fisiología , Proteínas no Estructurales Virales/metabolismo , Ensamble de Virus , Replicación Viral , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/virología , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/virología , Hepatitis C/genética , Hepatitis C/metabolismo , Humanos , Membranas Intracelulares/metabolismo , Gotas Lipídicas/virología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/virología , ARN Viral/análisis , ARN Viral/genética , Análisis Espacio-Temporal , Células Tumorales Cultivadas
16.
Nat Plants ; 5(2): 204-211, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30737514

RESUMEN

During establishment of arbuscular mycorrhizal symbioses, fungal hyphae invade root cells producing transient tree-like structures, the arbuscules, where exchange of photosynthates for soil minerals occurs. Arbuscule formation and collapse lead to rapid production and degradation of plant and fungal membranes, their spatiotemporal dynamics directly influencing nutrient exchange. We determined the ultra-structural details of both membrane surfaces and the interstitial apoplastic matrix by transmission electron microscopy tomography during growth and senescence of Rhizophagus irregularis arbuscules in rice. Invasive growth of arbuscular hyphae was associated with abundant fungal membrane tubules (memtubs) and plant peri-arbuscular membrane evaginations. Similarly, the phylogenetically distant arbuscular mycorrhizal fungus, Gigaspora rosea, and the fungal maize pathogen, Ustilago maydis, developed memtubs while invading host cells, revealing structural commonalities independent of the mutualistic or parasitic outcome of the interaction. Additionally, extracellular vesicles formed continuously in the peri-arbuscular interface from arbuscule biogenesis to senescence, suggesting an involvement in inter-organismic signal and nutrient exchange throughout the arbuscule lifespan.


Asunto(s)
Membrana Celular/ultraestructura , Vesículas Extracelulares/metabolismo , Micorrizas/fisiología , Oryza/microbiología , Células Vegetales/microbiología , Membrana Celular/microbiología , Tomografía con Microscopio Electrónico , Glomeromycota/fisiología , Hifa/fisiología , Micorrizas/citología , Oryza/citología , Oryza/genética , Hojas de la Planta/citología , Hojas de la Planta/microbiología , Hojas de la Planta/ultraestructura , Raíces de Plantas/citología , Raíces de Plantas/microbiología , Raíces de Plantas/ultraestructura , Plantas Modificadas Genéticamente , Simbiosis , Ustilago/patogenicidad , Zea mays/microbiología
17.
ACS Infect Dis ; 4(11): 1585-1600, 2018 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-30200751

RESUMEN

Clathrin-mediated endocytosis (CME) is an important entry pathway for viruses. Here, we applied click chemistry to covalently immobilize reovirus on surfaces to study CME during early host-pathogen interactions. To uncouple chemical and physical properties of viruses and determine their impact on CME initiation, we used the same strategy to covalently immobilize nanoparticles of different sizes. Using fluorescence live microscopy and electron microscopy, we confirmed that clathrin recruitment depends on particle size and discovered that the maturation into clathrin-coated vesicles (CCVs) is independent from cargo internalization. Surprisingly, we found that the final size of CCVs appears to be imprinted on the clathrin coat at early stages of cargo-cell interactions. Our approach has allowed us to unravel novel aspects of early interactions between viruses and the clathrin machinery that influence late stages of CME and CCVs formation. This method can be easily and broadly applied to the field of nanotechnology, endocytosis, and virology.


Asunto(s)
Vesículas Cubiertas por Clatrina/fisiología , Química Clic/métodos , Endocitosis , Nanopartículas/metabolismo , Reoviridae/fisiología , Internalización del Virus , Línea Celular , Vesículas Cubiertas por Clatrina/ultraestructura , Vidrio , Interacciones Microbiota-Huesped , Microscopía Electrónica , Microscopía Fluorescente , Propiedades de Superficie , Fenómenos Fisiológicos de los Virus
18.
Nat Cell Biol ; 20(4): 432-442, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29531309

RESUMEN

The acquisition of cellular identity is coupled to changes in the nuclear periphery and nuclear pore complexes (NPCs). Whether and how these changes determine cell fate remain unclear. We have uncovered a mechanism that regulates NPC acetylation to direct cell fate after asymmetric division in budding yeast. The lysine deacetylase Hos3 associates specifically with daughter cell NPCs during mitosis to delay cell cycle entry (Start). Hos3-dependent deacetylation of nuclear basket and central channel nucleoporins establishes daughter-cell-specific nuclear accumulation of the transcriptional repressor Whi5 during anaphase and perinuclear silencing of the G1/S cyclin gene CLN2 in the following G1 phase. Hos3-dependent coordination of both events restrains Start in daughter, but not in mother, cells. We propose that deacetylation modulates transport-dependent and transport-independent functions of NPCs, leading to differential cell cycle progression in mother and daughter cells. Similar mechanisms might regulate NPC functions in specific cell types and/or cell cycle stages in multicellular organisms.


Asunto(s)
Ciclo Celular , Mitosis , Poro Nuclear/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Acetilación , Ciclinas/genética , Ciclinas/metabolismo , Regulación Fúngica de la Expresión Génica , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Poro Nuclear/genética , Procesamiento Proteico-Postraduccional , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal , Factores de Tiempo
19.
Cell Rep ; 18(9): 2113-2123, 2017 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-28249158

RESUMEN

A global concern has emerged with the pandemic spread of Zika virus (ZIKV) infections that can cause severe neurological symptoms in adults and newborns. ZIKV is a positive-strand RNA virus replicating in virus-induced membranous replication factories (RFs). Here we used various imaging techniques to investigate the ultrastructural details of ZIKV RFs and their relationship with host cell organelles. Analyses of human hepatic cells and neural progenitor cells infected with ZIKV revealed endoplasmic reticulum (ER) membrane invaginations containing pore-like openings toward the cytosol, reminiscent to RFs in Dengue virus-infected cells. Both the MR766 African strain and the H/PF/2013 Asian strain, the latter linked to neurological diseases, induce RFs of similar architecture. Importantly, ZIKV infection causes a drastic reorganization of microtubules and intermediate filaments forming cage-like structures surrounding the viral RF. Consistently, ZIKV replication is suppressed by cytoskeleton-targeting drugs. Thus, ZIKV RFs are tightly linked to rearrangements of the host cell cytoskeleton.


Asunto(s)
Interacciones Huésped-Patógeno/fisiología , Replicación Viral/fisiología , Infección por el Virus Zika/virología , Virus Zika/ultraestructura , Animales , Línea Celular , Chlorocebus aethiops , Retículo Endoplásmico/ultraestructura , Retículo Endoplásmico/virología , Células HEK293 , Hepatocitos/ultraestructura , Hepatocitos/virología , Humanos , Filamentos Intermedios/metabolismo , Filamentos Intermedios/ultraestructura , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Células-Madre Neurales/ultraestructura , Células-Madre Neurales/virología , Células Madre/ultraestructura , Células Madre/virología , Células Vero , Virus Zika/metabolismo , Infección por el Virus Zika/metabolismo
20.
Nat Cell Biol ; 18(5): 516-26, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27111841

RESUMEN

Anaphase chromatin bridges can lead to chromosome breakage if not properly resolved before completion of cytokinesis. The NoCut checkpoint, which depends on Aurora B at the spindle midzone, delays abscission in response to chromosome segregation defects in yeast and animal cells. How chromatin bridges are detected, and whether abscission inhibition prevents their damage, remain key unresolved questions. We find that bridges induced by DNA replication stress and by condensation or decatenation defects, but not dicentric chromosomes, delay abscission in a NoCut-dependent manner. Decatenation and condensation defects lead to spindle stabilization during cytokinesis, allowing bridge detection by Aurora B. NoCut does not prevent DNA damage following condensin or topoisomerase II inactivation; however, it protects anaphase bridges and promotes cellular viability after replication stress. Therefore, the molecular origin of chromatin bridges is critical for activation of NoCut, which plays a key role in the maintenance of genome stability after replicative stress.


Asunto(s)
Anafase , Aurora Quinasas/metabolismo , Puntos de Control del Ciclo Celular , Replicación del ADN , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Estrés Fisiológico , Actomiosina/metabolismo , Adenosina Trifosfatasas/metabolismo , Anafase/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Replicación del ADN/efectos de los fármacos , ADN-Topoisomerasas de Tipo II/metabolismo , Proteínas de Unión al ADN/metabolismo , Histona Acetiltransferasas/metabolismo , Hidroxiurea/farmacología , Viabilidad Microbiana/efectos de los fármacos , Modelos Biológicos , Complejos Multiproteicos/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/ultraestructura , Huso Acromático/efectos de los fármacos , Huso Acromático/metabolismo , Estrés Fisiológico/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...