Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Biol Cell ; 34(13): ar132, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37819693

RESUMEN

The chitin synthase Chs3 is a multipass membrane protein whose trafficking is tightly controlled. Accordingly, its exit from the endoplasmic reticulum (ER) depends on several complementary mechanisms that ensure its correct folding. Despite its potential failure on its exit, Chs3 is very stable in this compartment, which suggests its poor recognition by ER quality control mechanisms such as endoplasmic reticulum-associated degradation (ERAD). Here we show that proper N-glycosylation of its luminal domain is essential to prevent the aggregation of the protein and its subsequent recognition by the Hrd1-dependent ERAD-L machinery. In addition, the interaction of Chs3 with its chaperone Chs7 seems to mask additional cytosolic degrons, thereby avoiding their recognition by the ERAD-C pathway. On top of that, Chs3 molecules that are not degraded by conventional ERAD can move along the ER membrane to reach the inner nuclear membrane, where they are degraded by the inner nuclear membrane-associated degradation (INMAD) system, which contributes to the intracellular homeostasis of Chs3. These results indicate that Chs3 is an excellent model to study quality control mechanisms in the cell and reinforce its role as a paradigm in intracellular trafficking research.


Asunto(s)
Quitina Sintasa , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Quitina Sintasa/genética , Quitina Sintasa/metabolismo , Degradación Asociada con el Retículo Endoplásmico , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Pliegue de Proteína , Ubiquitina-Proteína Ligasas/metabolismo
2.
Nat Commun ; 14(1): 1227, 2023 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-36869098

RESUMEN

Single ribonucleoside monophosphates (rNMPs) are transiently present in eukaryotic genomes. The RNase H2-dependent ribonucleotide excision repair (RER) pathway ensures error-free rNMP removal. In some pathological conditions, rNMP removal is impaired. If these rNMPs hydrolyze during, or prior to, S phase, toxic single-ended double-strand breaks (seDSBs) can occur upon an encounter with replication forks. How such rNMP-derived seDSB lesions are repaired is unclear. We expressed a cell cycle phase restricted allele of RNase H2 to nick at rNMPs in S phase and study their repair. Although Top1 is dispensable, the RAD52 epistasis group and Rtt101Mms1-Mms22 dependent ubiquitylation of histone H3 become essential for rNMP-derived lesion tolerance. Consistently, loss of Rtt101Mms1-Mms22 combined with RNase H2 dysfunction leads to compromised cellular fitness. We refer to this repair pathway as nick lesion repair (NLR). The NLR genetic network may have important implications in the context of human pathologies.


Asunto(s)
Redes Reguladoras de Genes , Ribonucleasas , Fase S , Replicación del ADN , Endorribonucleasas , Genómica , Saccharomyces cerevisiae
3.
Methods Mol Biol ; 2378: 85-100, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34985695

RESUMEN

Tandem fluorescent protein timers (tFTs) are versatile reporters of protein dynamics. A tFT consists of two fluorescent proteins with different maturation kinetics and provides a ratiometric readout of protein age, which can be exploited to follow intracellular trafficking, inheritance and turnover of tFT-tagged proteins. Here, we detail a protocol for high-throughput analysis of protein turnover with tFTs in yeast using fluorescence measurements of ordered colony arrays. We describe guidelines on optimization of experimental design with regard to the layout of colony arrays, growth conditions, and instrument choice. Combined with semi-automated genetic crossing using synthetic genetic array (SGA) methodology and high-throughput protein tagging with SWAp-Tag (SWAT) libraries, this approach can be used to compare protein turnover across the proteome and to identify regulators of protein turnover genome-wide.


Asunto(s)
Proteoma , Saccharomyces cerevisiae , Cinética , Proteolisis , Proteoma/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...