Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Physiol ; 602(1): 223-240, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37742121

RESUMEN

Current models of respiratory CO2 chemosensitivity are centred around the function of a specific population of neurons residing in the medullary retrotrapezoid nucleus (RTN). However, there is significant evidence suggesting that chemosensitive neurons exist in other brainstem areas, including the rhythm-generating region of the medulla oblongata - the preBötzinger complex (preBötC). There is also evidence that astrocytes, non-neuronal brain cells, contribute to central CO2 chemosensitivity. In this study, we reevaluated the relative contributions of the RTN neurons, the preBötC astrocytes, and the carotid body chemoreceptors in mediating the respiratory responses to CO2 in experimental animals (adult laboratory rats). To block astroglial signalling via exocytotic release of transmitters, preBötC astrocytes were targeted to express the tetanus toxin light chain (TeLC). Bilateral expression of TeLC in preBötC astrocytes was associated with ∼20% and ∼30% reduction of the respiratory response to CO2 in conscious and anaesthetized animals, respectively. Carotid body denervation reduced the CO2 respiratory response by ∼25%. Bilateral inhibition of RTN neurons transduced to express Gi-coupled designer receptors exclusively activated by designer drug (DREADDGi ) by application of clozapine-N-oxide reduced the CO2 response by ∼20% and ∼40% in conscious and anaesthetized rats, respectively. Combined blockade of astroglial signalling in the preBötC, inhibition of RTN neurons and carotid body denervation reduced the CO2 -induced respiratory response by ∼70%. These data further support the hypothesis that the CO2 -sensitive drive to breathe requires inputs from the peripheral chemoreceptors and several central chemoreceptor sites. At the preBötC level, astrocytes modulate the activity of the respiratory network in response to CO2 , either by relaying chemosensory information (i.e. they act as CO2  sensors) or by enhancing the preBötC network excitability to chemosensory inputs. KEY POINTS: This study reevaluated the roles played by the carotid bodies, neurons of the retrotrapezoid nucleus (RTN) and astrocytes of the preBötC in mediating the CO2 -sensitive drive to breathe. The data obtained show that disruption of preBötC astroglial signalling, blockade of inputs from the peripheral chemoreceptors or inhibition of RTN neurons similarly reduce the respiratory response to hypercapnia. These data provide further support for the hypothesis that the CO2 -sensitive drive to breathe is mediated by the inputs from the peripheral chemoreceptors and several central chemoreceptor sites.


Asunto(s)
Cuerpo Carotídeo , Ratas , Animales , Cuerpo Carotídeo/fisiología , Dióxido de Carbono/metabolismo , Astrocitos/fisiología , Células Quimiorreceptoras/metabolismo , Respiración , Bulbo Raquídeo/fisiología
2.
J Appl Physiol (1985) ; 135(5): 1041-1052, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37767557

RESUMEN

In neonatal rhythmic medullary slices, muscarinic acetylcholine receptor (mAChR) activation of hypoglossal (XII) motoneurons that innervate the tongue has a net excitatory effect on XII inspiratory motor output. Conversely, during rapid eye movement sleep in adult rodents, XII motoneurons experience a loss of excitability partly due to activation of mAChRs. This may be mediated by activation of G-protein-coupled inwardly rectifying potassium (GIRK) channels. Therefore, this study was designed to evaluate whether muscarinic modulation of XII inspiratory motor output in mouse rhythmic medullary slices includes GIRK channel-mediated inhibition and, if so, when this inhibitory mechanism emerges. Local pressure injection of the mAChR agonist muscarine potentiated inspiratory bursting by 150 ± 28% in postnatal day (P)0-P5 rhythmic medullary slice preparations. In the absence of muscarine, pharmacological GIRK channel block by Tertiapin-Q did not affect inspiratory burst parameters, whereas activation with ML297 decreased inspiratory burst area. Blocking GIRK channels by local preapplication of Tertiapin-Q revealed a developmental change in muscarinic modulation of inspiratory bursting. In P0-P2 rhythmic medullary slices, Tertiapin-Q preapplication had no significant effect on muscarinic potentiation of inspiratory bursting (a negligible 6% decrease). However, preapplication of Tertiapin-Q to P3-P5 rhythmic medullary slices caused a 19% increase in muscarinic potentiation of XII inspiratory burst amplitude. Immunofluorescence experiments revealed expression of GIRK 1 and 2 subunits and M1, M2, M3, and M5 mAChRs from P0 to P5. Overall, these data support that mechanisms underlying muscarinic modulation of inspiratory burst activity change postnatally and that potent GIRK-mediated inhibition described in adults emerges early in postnatal life.NEW & NOTEWORTHY Muscarinic modulation of inspiratory bursting at hypoglossal motoneurons has a net excitatory effect in neonatal rhythmic medullary slice preparations and a net inhibitory effect in adult animals. We demonstrate that muscarinic modulation of inspiratory bursting undergoes maturational changes from postnatal days 0 to 5 that include emergence of an inhibitory component mediated by G-protein-coupled inwardly rectifying potassium channels after postnatal day 3 in neonatal mouse rhythmic medullary slice preparations.


Asunto(s)
Nervio Hipogloso , Muscarina , Animales , Ratones , Animales Recién Nacidos , Nervio Hipogloso/fisiología , Muscarina/metabolismo , Muscarina/farmacología , Colinérgicos/metabolismo , Proteínas de Unión al GTP/metabolismo , Proteínas de Unión al GTP/farmacología , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/metabolismo
3.
J Comp Neurol ; 531(13): 1317-1332, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37211631

RESUMEN

Rhythmic inspiratory activity is generated in the preBötzinger complex (preBötC), a neuronal network located bilaterally in the ventrolateral medulla. Cholinergic neurotransmission affects respiratory rhythmogenic neurons and inhibitory glycinergic neurons in the preBötC. Acetylcholine has been extensively investigated given that cholinergic fibers and receptors are present and functional in the preBötC, are important in sleep/wake cycling, and modulate inspiratory frequency through its action on preBötC neurons. Despite its role in modulating inspiratory rhythm, the source of acetylcholine input to the preBötC is not known. In the present study, we used retrograde and anterograde viral tracing approaches in transgenic mice expressing Cre-recombinase driven by the choline acetyltransferase promoter to identify the source of cholinergic inputs to the preBötC. Surprisingly, we observed very few, if any, cholinergic projections originating from the laterodorsal and pedunculopontine tegmental nuclei (LDT/PPT), two main cholinergic, state-dependent systems long hypothesized as the main source of cholinergic inputs to the preBötC. On the contrary, we identified glutamatergic and GABAergic/glycinergic neurons in the PPT/LDT that send projections to the preBötC. Although these neurons contribute minimally to the direct cholinergic modulation of preBötC neurons, they could be involved in state-dependent regulation of breathing. Our data also suggest that the source of cholinergic inputs to the preBötC appears to originate from cholinergic neurons in neighboring regions of the medulla, the intermediate reticular formation, the lateral paragigantocellularis, and the nucleus of the solitary tract.


Asunto(s)
Acetilcolina , Centro Respiratorio , Ratones , Animales , Bulbo Raquídeo/fisiología , Neuronas Colinérgicas/fisiología , Ratones Transgénicos , Colinérgicos
4.
J Appl Physiol (1985) ; 133(2): 371-389, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35708704

RESUMEN

Serotonin (5-HT) is an important modulator of brain networks that control breathing. The selective serotonin reuptake inhibitor fluoxetine (FLX) is the first-line antidepressant drug prescribed during pregnancy. We investigated the effects of prenatal FLX exposure on baseline breathing, ventilatory and metabolic responses to hypercapnia and hypoxia as well as number of brainstem 5-HT and tyrosine hydroxylase (TH) neurons of rats during postnatal development (P0-82). Prenatal FLX exposure of males showed a lower baseline V̇e that appeared in juveniles and remained in adulthood, with no sleep-wake state dependency. Prenatal FLX exposure of females did not affect baseline breathing. Juvenile male FLX showed increased CO2 and hypoxic ventilatory responses, normalizing by adulthood. Alterations in juvenile FLX-treated males were associated with a greater number of 5-HT neurons in the raphe obscurus (ROB) and raphe magnus (RMAG). Adult FLX-exposed males showed greater number of 5-HT neurons in the raphe pallidus (RPA) and TH neurons in the A5, whereas reduced number of TH neurons in A7. Prenatal FLX exposure of female rats was associated with greater hyperventilation induced by hypercapnia at P0-2 and juveniles, whereas P12-14 and adult FLX (non-rapid eye movement, NREM sleep) rats showed an attenuation of the hyperventilation induced by CO2. FLX-exposed females had fewer 5-HT neurons in the RPA and reduced TH A6 density at P0-2; and greater number of TH neurons in the A7 at P12-14. These data indicate that prenatal FLX exposure affects the number of some monoaminergic regions in the brain and results in long-lasting, sex-specific changes in baseline breathing pattern and ventilatory responses to respiratory challenges.NEW & NOTEWORTHY Selective serotonin reuptake inhibitors (SSRIs) readily cross the placental and the fetal blood-brain barrier where it will affect 5-HT levels in the developing brain. Although SSRI is used during pregnancy, there are no studies showing SSRI exposure during late pregnancy and postnatal effects on breathing control in males and females. We demonstrated that fluoxetine exposure during late pregnancy in rats was associated with long-lasting, sex-specific effects on breathing and brainstem monoaminergic groups.


Asunto(s)
Fluoxetina , Efectos Tardíos de la Exposición Prenatal , Animales , Dióxido de Carbono , Femenino , Fluoxetina/farmacología , Humanos , Hipercapnia , Hiperventilación , Masculino , Placenta/metabolismo , Embarazo , Ratas , Serotonina/metabolismo , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología
6.
Front Physiol ; 12: 626470, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33927636

RESUMEN

The pre-Bötzinger complex (preBötC) of the ventral medulla generates the mammalian inspiratory breathing rhythm. When isolated in explants and deprived of synaptic inhibition, the preBötC continues to generate inspiratory-related rhythm. Mechanisms underlying burst generation have been investigated for decades, but cellular and synaptic mechanisms responsible for burst termination have received less attention. KCNQ-mediated K+ currents contribute to burst termination in other systems, and their transcripts are expressed in preBötC neurons. Therefore, we tested the hypothesis that KCNQ channels also contribute to burst termination in the preBötC. We recorded KCNQ-like currents in preBötC inspiratory neurons in neonatal rat slices that retain respiratory rhythmicity. Blocking KCNQ channels with XE991 or linopirdine (applied via superfusion or locally) increased inspiratory burst duration by 2- to 3-fold. By contrast, activation of KCNQ with retigabine decreased inspiratory burst duration by ~35%. These data from reduced preparations suggest that the KCNQ current in preBötC neurons contributes to inspiratory burst termination.

7.
J Comp Neurol ; 529(4): 853-884, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32656849

RESUMEN

The lateral parafacial region (pFL ; which encompasses the parafacial respiratory group, pFRG) is a conditional oscillator that drives active expiration during periods of high respiratory demand, and increases ventilation through the recruitment of expiratory muscles. The pFL activity is highly modulated, and systematic analysis of its afferent projections is required to understand its connectivity and modulatory control. We combined a viral retrograde tracing approach to map direct brainstem projections to the putative location of pFL , with RNAScope and immunofluorescence to identify the neurochemical phenotype of the projecting neurons. Within the medulla, retrogradely-labeled, glutamatergic, glycinergic and GABAergic neurons were found in the ventral respiratory column (Bötzinger and preBötzinger Complex [preBötC], ventral respiratory group, ventral parafacial region [pFV ] and pFL ), nucleus of the solitary tract (NTS), reticular formation (RF), pontine and midbrain vestibular nuclei, and medullary raphe. In the pons and midbrain, retrogradely-labeled neurons of the same phenotypes were found in the Kölliker-Fuse and parabrachial nuclei, periaqueductal gray, pedunculopontine nucleus (PPT) and laterodorsal tegmentum (LDT). We also identified somatostatin-expressing neurons in the preBötC and PHOX2B immunopositive cells in the pFV , NTS, and part of the RF. Surprisingly, we found no catecholaminergic neurons in the NTS, A5 or Locus Coeruleus, no serotoninergic raphe neurons nor any cholinergic neurons in the PPT and LDT that projected to the pFL . Our results indicate that pFL neurons receive extensive excitatory and inhibitory inputs from several respiratory and nonrespiratory related brainstem regions that could contribute to the complex modulation of the conditional pFL oscillator for active expiration.


Asunto(s)
Mapeo Encefálico/métodos , Tronco Encefálico/anatomía & histología , Tronco Encefálico/química , Vías Aferentes/anatomía & histología , Vías Aferentes/química , Vías Aferentes/fisiología , Animales , Tronco Encefálico/fisiología , Masculino , Ratas , Ratas Sprague-Dawley , Respiración
8.
Nature ; 589(7842): 426-430, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33268898

RESUMEN

Among numerous challenges encountered at the beginning of extrauterine life, the most celebrated is the first breath that initiates a life-sustaining motor activity1. The neural systems that regulate breathing are fragile early in development, and it is not clear how they adjust to support breathing at birth. Here we identify a neuropeptide system that becomes activated immediately after birth and supports breathing. Mice that lack PACAP selectively in neurons of the retrotrapezoid nucleus (RTN) displayed increased apnoeas and blunted CO2-stimulated breathing; re-expression of PACAP in RTN neurons corrected these breathing deficits. Deletion of the PACAP receptor PAC1 from the pre-Bötzinger complex-an RTN target region responsible for generating the respiratory rhythm-phenocopied the breathing deficits observed after RTN deletion of PACAP, and suppressed PACAP-evoked respiratory stimulation in the pre-Bötzinger complex. Notably, a postnatal burst of PACAP expression occurred in RTN neurons precisely at the time of birth, coinciding with exposure to the external environment. Neonatal mice with deletion of PACAP in RTN neurons displayed increased apnoeas that were further exacerbated by changes in ambient temperature. Our findings demonstrate that well-timed PACAP expression by RTN neurons provides an important supplementary respiratory drive immediately after birth and reveal key molecular components of a peptidergic neural circuit that supports breathing at a particularly vulnerable period in life.


Asunto(s)
Tronco Encefálico/fisiología , Parto/fisiología , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Respiración , Animales , Apnea/metabolismo , Tronco Encefálico/citología , Dióxido de Carbono/metabolismo , Femenino , Masculino , Ratones , Neuronas/metabolismo , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/deficiencia , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/genética , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/deficiencia , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/genética , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/metabolismo
9.
Front Cell Neurosci ; 13: 365, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31496935

RESUMEN

Exploration of purinergic signaling in brainstem homeostatic control processes is challenging the traditional view that the biphasic hypoxic ventilatory response, which comprises a rapid initial increase in breathing followed by a slower secondary depression, reflects the interaction between peripheral chemoreceptor-mediated excitation and central inhibition. While controversial, accumulating evidence supports that in addition to peripheral excitation, interactions between central excitatory and inhibitory purinergic mechanisms shape this key homeostatic reflex. The objective of this review is to present our working model of how purinergic signaling modulates the glutamatergic inspiratory synapse in the preBötzinger Complex (key site of inspiratory rhythm generation) to shape the hypoxic ventilatory response. It is based on the perspective that has emerged from decades of analysis of glutamatergic synapses in the hippocampus, where the actions of extracellular ATP are determined by a complex signaling system, the purinome. The purinome involves not only the actions of ATP and adenosine at P2 and P1 receptors, respectively, but diverse families of enzymes and transporters that collectively determine the rate of ATP degradation, adenosine accumulation and adenosine clearance. We summarize current knowledge of the roles played by these different purinergic elements in the hypoxic ventilatory response, often drawing on examples from other brain regions, and look ahead to many unanswered questions and remaining challenges.

10.
J Physiol ; 597(12): 3183-3201, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31038198

RESUMEN

KEY POINTS: Persistent inward currents (PICs) in spinal motoneurons are long-lasting, voltage-dependent currents that increase excitability; they are dramatically potentiated by serotonin, muscarine, and noradrenaline (norepinephrine). Loss of these modulators (and the PIC) during sleep is hypothesized as a major contributor to REM sleep atonia. Reduced excitability of XII motoneurons that drive airway muscles and maintain airway patency is causally implicated in obstructive sleep apnoea (OSA), but whether XII motoneurons possess a modulator-sensitive PIC that could be a factor in the reduced airway tone of sleep is unknown. Whole-cell recordings from rat XII motoneurons in brain slices indicate that PIC amplitude increases ∼50% between 1 and 23 days of age, when potentiation of the PIC by 5HT2 , muscarinic, or α1 noradrenergic agonists peaks at <50%, manyfold lower than the potentiation observed in spinal motoneurons. α1 noradrenergic receptor activation produced changes in XII motoneuron firing behaviour consistent with PIC involvement, but indicators of strong PIC activation were never observed; in vivo experiments are needed to determine the role of the modulator-sensitive PIC in sleep-dependent reductions in airway tone. ABSTRACT: Hypoglossal (XII) motoneurons play a key role in maintaining airway patency; reductions in their excitability during sleep through inhibition and disfacilitation, i.e. loss of excitatory modulation, is implicated in obstructive sleep apnoea. In spinal motoneurons, 5HT2 , muscarinic and α1 noradrenergic modulatory systems potentiate persistent inward currents (PICs) severalfold, dramatically increasing excitability. If the PICs in XII and spinal motoneurons are equally sensitive to modulation, loss of the PIC secondary to reduced modulatory tone during sleep could contribute to airway atonia. Modulatory systems also change developmentally. We therefore characterized developmental changes in magnitude of the XII motoneuron PIC and its sensitivity to modulation by comparing, in neonatal (P1-4) and juvenile (P14-23) rat brainstem slices, the PIC elicited by slow voltage ramps in the absence and presence of agonists for 5HT2 , muscarinic, and α1 noradrenergic receptors. XII motoneuron PIC amplitude increased developmentally (from -195 ± 12 to -304 ± 19 pA). In neonatal XII motoneurons, the PIC was only potentiated by α1 receptor activation (5 ± 4%). In contrast, all modulators potentiated the juvenile XII motoneurons PIC (5HT2 , 5 ± 5%; muscarine, 22 ± 11%; α1 , 18 ± 5%). These data suggest that the influence of the PIC and its modulation on XII motoneuron excitability will increase with postnatal development. Notably, the modulator-induced potentiation of the PIC in XII motoneurons was dramatically smaller than the 2- to 6-fold potentiation reported for spinal motoneurons. In vivo measurements are required to determine if the modulator-sensitive, XII motoneuron PIC is an important factor in sleep-state dependent reductions in airway tone.


Asunto(s)
Neuronas Motoras/fisiología , Envejecimiento/fisiología , Animales , Animales Recién Nacidos , Encéfalo/efectos de los fármacos , Encéfalo/crecimiento & desarrollo , Encéfalo/fisiología , Femenino , Masculino , Neuronas Motoras/efectos de los fármacos , Muscarina/farmacología , Norepinefrina/farmacología , Ratas Sprague-Dawley , Serotonina/farmacología
12.
Am J Physiol Regul Integr Comp Physiol ; 316(3): R281-R297, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30601705

RESUMEN

Amphibian respiratory development involves a dramatic metamorphic transition from gill to lung breathing and coordination of distinct motor outputs. To determine whether the emergence of adult respiratory motor patterns was associated with similarly dramatic changes in motoneuron (MN) properties, we characterized the intrinsic electrical properties of American bullfrog trigeminal MNs innervating respiratory muscles comprising the buccal pump. In premetamorphic tadpoles (TK stages IX-XVIII) and adult frogs, morphometric analyses and whole cell recordings were performed in trigeminal MNs identified by fluorescent retrograde labeling. Based on the amplitude of the depolarizing sag induced by hyperpolarizing voltage steps, two MN subtypes (I and II) were identified in tadpoles and adults. Compared with type II MNs, type I MNs had larger sag amplitudes (suggesting a larger hyperpolarization-activated inward current), greater input resistance, lower rheobase, hyperpolarized action potential threshold, steeper frequency-current relationships, and fast firing rates and received fewer excitatory postsynaptic currents. Postmetamorphosis, type I MNs exhibited similar sag, enhanced postinhibitory rebound, and increased action potential amplitude with a smaller-magnitude fast afterhyperpolarization. Compared with tadpoles, type II MNs from frogs received higher-frequency, larger-amplitude excitatory postsynaptic currents. Input resistance decreased and rheobase increased postmetamorphosis in all MNs, concurrent with increased soma area and hyperpolarized action potential threshold. We suggest that type I MNs are likely recruited in response to smaller, buccal-related synaptic inputs as well as larger lung-related inputs, whereas type II MNs are likely recruited in response to stronger synaptic inputs associated with larger buccal breaths, lung breaths, or nonrespiratory behaviors involving powerful muscle contractions.


Asunto(s)
Branquias/crecimiento & desarrollo , Branquias/fisiología , Pulmón/crecimiento & desarrollo , Pulmón/fisiología , Metamorfosis Biológica/fisiología , Neuronas Motoras/fisiología , Rana catesbeiana/fisiología , Músculos Respiratorios/inervación , Músculos Respiratorios/fisiología , Potenciales de Acción/fisiología , Animales , Mejilla/inervación , Mejilla/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Transmisión Sináptica/fisiología , Nervio Trigémino/fisiología
13.
J Physiol ; 596(15): 2943-2944, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29947074

Asunto(s)
Hipoxia , Humanos
15.
Nat Rev Neurosci ; 19(6): 351-367, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29740175

RESUMEN

Breathing is a well-described, vital and surprisingly complex behaviour, with behavioural and physiological outputs that are easy to directly measure. Key neural elements for generating breathing pattern are distinct, compact and form a network amenable to detailed interrogation, promising the imminent discovery of molecular, cellular, synaptic and network mechanisms that give rise to the behaviour. Coupled oscillatory microcircuits make up the rhythmic core of the breathing network. Primary among these is the preBötzinger Complex (preBötC), which is composed of excitatory rhythmogenic interneurons and excitatory and inhibitory pattern-forming interneurons that together produce the essential periodic drive for inspiration. The preBötC coordinates all phases of the breathing cycle, coordinates breathing with orofacial behaviours and strongly influences, and is influenced by, emotion and cognition. Here, we review progress towards cracking the inner workings of this vital core.


Asunto(s)
Encéfalo/fisiología , Generadores de Patrones Centrales/fisiología , Interneuronas/fisiología , Respiración , Animales , Nervios Craneales/fisiología , Humanos , Pulmón/inervación , Pulmón/fisiología , Contracción Muscular , Músculo Esquelético/inervación , Músculo Esquelético/fisiología , Vías Nerviosas/fisiología
16.
J Physiol ; 596(15): 3245-3269, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-28678385

RESUMEN

KEY POINTS: The ventilatory response to reduced oxygen (hypoxia) is biphasic, comprising an initial increase in ventilation followed by a secondary depression. Our findings indicate that, during hypoxia, astrocytes in the pre-Bötzinger complex (preBötC), a critical site of inspiratory rhythm generation, release a gliotransmitter that acts via P2Y1 receptors to stimulate ventilation and reduce the secondary depression. In vitro analyses reveal that ATP excitation of the preBötC involves P2Y1 receptor-mediated release of Ca2+ from intracellular stores. By identifying a role for gliotransmission and the sites, P2 receptor subtype, and signalling mechanisms via which ATP modulates breathing during hypoxia, these data advance our understanding of the mechanisms underlying the hypoxic ventilatory response and highlight the significance of purinergic signalling and gliotransmission in homeostatic control. Clinically, these findings are relevant to conditions in which hypoxia and respiratory depression are implicated, including apnoea of prematurity, sleep disordered breathing and congestive heart failure. ABSTRACT: The hypoxic ventilatory response (HVR) is biphasic, consisting of a phase I increase in ventilation followed by a secondary depression (to a steady-state phase II) that can be life-threatening in premature infants who suffer from frequent apnoeas and respiratory depression. ATP released in the ventrolateral medulla oblongata during hypoxia attenuates the secondary depression. We explored a working hypothesis that vesicular release of ATP by astrocytes in the pre-Bötzinger Complex (preBötC) inspiratory rhythm-generating network acts via P2Y1 receptors to mediate this effect. Blockade of vesicular exocytosis in preBötC astrocytes bilaterally (using an adenoviral vector to specifically express tetanus toxin light chain in astrocytes) reduced the HVR in anaesthetized rats, indicating that exocytotic release of a gliotransmitter within the preBötC contributes to the hypoxia-induced increases in ventilation. Unilateral blockade of P2Y1 receptors in the preBötC via local antagonist injection enhanced the secondary respiratory depression, suggesting that a significant component of the phase II increase in ventilation is mediated by ATP acting at P2Y1 receptors. In vitro responses of the preBötC inspiratory network, preBötC inspiratory neurons and cultured preBötC glia to purinergic agents demonstrated that the P2Y1 receptor-mediated increase in fictive inspiratory frequency involves Ca2+ recruitment from intracellular stores leading to increases in intracellular Ca2+ ([Ca2+ ]i ) in inspiratory neurons and glia. These data suggest that ATP is released by preBötC astrocytes during hypoxia and acts via P2Y1 receptors on inspiratory neurons (and/or glia) to evoke Ca2+ release from intracellular stores and an increase in ventilation that counteracts the hypoxic respiratory depression.


Asunto(s)
Adenosina Trifosfato/fisiología , Astrocitos/fisiología , Hipoxia/fisiopatología , Bulbo Raquídeo/fisiología , Receptores Purinérgicos P2Y1/fisiología , Animales , Calcio/fisiología , Masculino , Ventilación Pulmonar , Ratas Sprague-Dawley
18.
Front Physiol ; 8: 452, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28713283

RESUMEN

Hydrogen Sulfide (H2S) is one of three gasotransmitters that modulate excitability in the CNS. Global application of H2S donors or inhibitors of H2S synthesis to the respiratory network has suggested that inspiratory rhythm is modulated by exogenous and endogenous H2S. However, effects have been variable, which may reflect that the RTN/pFRG (retrotrapezoid nucleus, parafacial respiratory group) and the preBötzinger Complex (preBötC, critical for inspiratory rhythm generation) are differentially modulated by exogenous H2S. Importantly, site-specific modulation of respiratory nuclei by H2S means that targeted, rather than global, manipulation of respiratory nuclei is required to understand the role of H2S signaling in respiratory control. Thus, our aim was to test whether endogenous H2S, which is produced by cystathionine-ß-synthase (CBS) in the CNS, acts specifically within the preBötC to modulate inspiratory activity under basal (in vitro/in vivo) and hypoxic conditions (in vivo). Inhibition of endogenous H2S production by bath application of the CBS inhibitor, aminooxyacetic acid (AOAA, 0.1-1.0 mM) to rhythmic brainstem spinal cord (BSSC) and medullary slice preparations from newborn rats, or local application of AOAA into the preBötC (slices only) caused a dose-dependent decrease in burst frequency. Unilateral injection of AOAA into the preBötC of anesthetized, paralyzed adult rats decreased basal inspiratory burst frequency, amplitude and ventilatory output. AOAA in vivo did not affect the initial hypoxia-induced (10% O2, 5 min) increase in ventilatory output, but enhanced the secondary hypoxic respiratory depression. These data suggest that the preBötC inspiratory network receives tonic excitatory modulation from the CBS-H2S system, and that endogenous H2S attenuates the secondary hypoxic respiratory depression.

19.
J Appl Physiol (1985) ; 123(5): 1344-1349, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28522760

RESUMEN

A commonly held view that dominates both the scientific and educational literature is that in terrestrial mammals the central nervous system lacks a physiological hypoxia sensor capable of triggering increases in lung ventilation in response to decreases in Po2 of the brain parenchyma. Indeed, a normocapnic hypoxic ventilatory response has never been observed in humans following bilateral resection of the carotid bodies. In contrast, almost complete or partial recovery of the hypoxic ventilatory response after denervation/removal of the peripheral respiratory oxygen chemoreceptors has been demonstrated in many experimental animals when assessed in an awake state. In this essay we review the experimental evidence obtained using in vitro and in vivo animal models, results of human studies, and discuss potential mechanisms underlying the effects of CNS hypoxia on breathing. We consider experimental limitations and discuss potential reasons why the recovery of the hypoxic ventilatory response has not been observed in humans. We review recent experimental evidence suggesting that the lower brain stem contains functional oxygen sensitive elements capable of stimulating respiratory activity independently of peripheral chemoreceptor input.


Asunto(s)
Sistema Nervioso Central/fisiopatología , Células Quimiorreceptoras/fisiología , Hipoxia/fisiopatología , Oxígeno/fisiología , Animales , Encéfalo/fisiopatología , Cuerpo Carotídeo/fisiopatología , Desnervación , Humanos , Respiración
20.
Elife ; 42015 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-26687006

RESUMEN

All behaviors require coordinated activation of motoneurons from central command and premotor networks. The genetic identities of premotoneurons providing behaviorally relevant excitation to any pool of respiratory motoneurons remain unknown. Recently, we established in vitro that Dbx1-derived pre-Bötzinger complex neurons are critical for rhythm generation and that a subpopulation serves a premotor function (Wang et al., 2014). Here, we further show that a subpopulation of Dbx1-derived intermediate reticular (IRt) neurons are rhythmically active during inspiration and project to the hypoglossal (XII) nucleus that contains motoneurons important for maintaining airway patency. Laser ablation of Dbx1 IRt neurons, 57% of which are glutamatergic, decreased ipsilateral inspiratory motor output without affecting frequency. We conclude that a subset of Dbx1 IRt neurons is a source of premotor excitatory drive, contributing to the inspiratory behavior of XII motoneurons, as well as a key component of the airway control network whose dysfunction contributes to sleep apnea.


Asunto(s)
Proteínas de Homeodominio/análisis , Nervio Hipogloso/fisiología , Inhalación/fisiología , Neuronas Motoras/fisiología , Potenciales de Acción , Animales , Femenino , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA