RESUMEN
Although there are few reduced dinitrogen complexes of scandium, this metal has revealed a new structural type in reductive dinitrogen chemistry by reduction of bis(pentamethylcyclopentadienyl) scandium halides under N2. Reduction of (Cp* = C5Me5) with potassium graphite (KC8) under dinitrogen generates the dark blue paramagnetic complex , 1. This end-on bridging (N[double bond, length as m-dash]N)2- complex is a diradical with a magnetic moment of 2.8µ B. Upon further reduction of 1 with KC8, the orange diamagnetic trimetallic complex , 2, is obtained. This complex has an unprecedented structure in which two side-on bridging (N[double bond, length as m-dash]N)2- ligands are bound to the central (Cp*Sc)2+ moiety. Complex 2 can also be obtained directly from reduction of or a mixture of and with KC8. The reaction of with KC8 in the presence of 18-crown-6 or 2.2.2-cryptand affords 2 along with small amounts of , 3, which is green at room temperature and purple at low temperature and displays a mixture of side-on and end-on bridging isomers in the crystal structure collected at -180 °C. Density functional theory (DFT) calculations are consistent with a triplet ground state for the end-on complex 1 and singlet ground states for the side-on complexes 2 and 3.
RESUMEN
Treatment of the scandium(II) metallocene Cpttt2Sc (Cpttt = C5H2tBu3) with CO or the isocyanide CNXyl (Xyl = C6H3Me2-2,6) yields the carbonyl complex Cpttt2Sc(CO), 1, or the isocyanide complex Cpttt2Sc(CNXyl), 2, which were identified by X-ray crystallography. Isotopic labeling with 13CO shows the CO stretch of 1 at 1875 cm-1 shifts to 1838 cm-1 in 1-13CO. The CN stretch in 2 is shifted to 1939 cm-1 compared to 2118 cm-1 for the free isocyanide. The 80.1 MHz (28.7 G) 45Sc hyperfine coupling in 1 and 74.7 MHz (26.8 G) in 2 are similar to the 82.6 MHz (29.6 G) coupling constant in Cpttt2Sc and indicate that 1 and 2 are Sc(II) complexes. A comprehensive analysis of the electronic structures of 1 and 2 using DFT calculations is reported.
RESUMEN
Singlet-triplet (ST) gaps are key descriptors of carbenes, because their properties and reactivity are strongly spin-dependent. However, the theoretical prediction of ST gaps is challenging and generally thought to require elaborate correlated wave function methods or double-hybrid density functionals. By evaluating two recent test sets of arylcarbenes (AC12 and AC18), we show that local hybrid functionals based on the "common t" local mixing function (LMF) model achieve mean absolute errors below 1 kcal/mol at a computational cost only slightly higher than that of global hybrid functionals. An analysis of correlation contributions to the ST gaps suggests that the accuracy of the common t-LMF model is mainly due to an improved description of nondynamical correlation which, unlike exchange, is not additive in each spin-channel. Although spin-nonadditivity can be achieved using the local spin polarization alone, using the "common", i.e., spin-unresolved, iso-orbital indicator t for constructing the LMF is found to be critical for consistent accuracy in ST gaps of arylcarbenes. The results support the view of LHs as vehicles to improve the description of nondynamical correlation rather than sophisticated exchange mixing approaches.
RESUMEN
A recent benchmark study of two-photon absorption (2PA) strengths using meta-generalized gradient approximation (MGGA) exchange-correlation functionals by Ahmadzadeh, Li, Rinkevicius, Norman, and Zalesny (ALRNZ24) [ J. Phys. Chem. Lett. 2024, 15, 969] misrepresents the state of the field in this area. Not only was an assessment of 2PA strengths for the exact same benchmark published previously; ALRNZ24 also uses a gauge-variant form of MGGA response theory which produces erratic behavior for certain benchmark systems. Applications of MGGAs to optical and magnetic response properties should use a gauge-invariant extension of MGGA functionals such as paramagnetic current-dependent MGGAs.
RESUMEN
To expand the range of donor atoms known to stabilize 4fn5d1 Ln(II) rare-earth metal (Ln) ions beyond the C, N, and O first row main group donor atoms, the Ln(III) sulfur donor terphenylthiolate iodide complexes, LnIII(SAriPr6)2I (AriPr6 = C6H3-2,6-(C6H2-2,4,6-iPr3)2, Ln = La, Nd) were reduced to form LnII(SAriPr6)2 complexes. These Ln(II) species were structurally characterized, analyzed by density functional theory (DFT) calculations, and compared to Tm(SAriPr6)2, which was synthesized from TmI2(DME)3.
RESUMEN
The factors affecting the formation and crystal structures of unusual 6d1 Th(III) square planar aryloxide complexes, as exemplified by [Th(OArMe)4]1- (OArMe = OC6H2tBu2-2,6-Me-4), were explored by synthetic and reduction studies of a series of related Th(IV) tetrakis(aryloxide) complexes, Th(OArR)4 (OArR = OC6H2tBu2-2,6-R-4). Specifically, electronic, steric, and countercation effects were explored by varying the aryloxide ligand, the alkali metal reducing agent, and the alkali metal chelating agent. Salt metathesis reactions between ThBr4(DME)2 (DME = 1,2-dimethoxyethane) and 4 equiv of the appropriate potassium aryloxide salt were used to prepare a series of Th(IV) aryloxide complexes in high yields: Th(OArH)4 (OArH = OC6H3tBu2-2,6), Th(OArtBu)4 (OArtBu = OC6H2tBu3-2,4,6), Th(OArOMe)4 (OArOMe = OC6H2tBu2-2,6-OMe-4), and Th(OArPh)4 (OArPh = OC6H2tBu2-2,6-Ph-4). Th(OArH)4 can be reduced by KC8, Na, or Li in the absence or presence of 2.2.2-cryptand (crypt) or 18-crown-6 (crown) to form dark purple solutions that have EPR and UV-visible spectra similar to those of the square planar Th(III) complex, [Th(OArMe)4]1-. Hence, the para position of the aryloxide ligand does not have to be alkylated to obtain the Th(III) complexes. Furthermore, reduction of Th(OArOMe)4, Th(OArtBu)4, and Th(OArPh)4 with KC8 in THF generated purple solutions with EPR and UV-visible spectra that are similar to those of the previously reported Th(III) anion, [Th(OArMe)4]1-. Although many of these reduction reactions did not produce single crystals suitable for study by X-ray diffraction, reduction of Th(OArH)4, Th(OArtBu)4, and Th(OArOMe)4 with Li provided X-ray quality crystals whose structures had square planar coordination geometries. Reduction of Th(OArPh)4 with Li also gave a product with EPR and UV-visible spectra that matched those of [Th(OArMe)4]1-, but X-ray quality crystals of the reduction product were too unstable to provide data. Neither Th(Odipp)4(THF)2 (Odipp = OC6H3iPr2-2,6) nor Th(Odmp)4(THF)2 (Odmp = OC6H3Me2-2,6) could be reduced to Th(III) products under similar conditions. Reduction of U(OArH)3(THF) with KC8 in the presence of 2.2.2-cryptand (crypt) was examined for comparison and formed [K(crypt)][U(OArH)4], which has a tetrahedral arrangement of the aryloxide ligands. Moreover, no further reduction was observed when either [K(crypt)][U(OArH)4] or [K(crown)(THF)2][U(OArH)4] were treated with KC8 or Li.
RESUMEN
The natural determinant reference (NDR) or principal natural determinant is the Slater determinant comprised of the N most strongly occupied natural orbitals of an N-electron state of interest. Unlike the Kohn-Sham (KS) determinant, which yields the exact ground-state density, the NDR only yields the best idempotent approximation to the interacting one-particle reduced density matrix, but it is well-defined in common atom-centered basis sets and is representation-invariant. We show that the under-determination problem of prior attempts to define a ground-state energy functional of the NDR is overcome in a grand-canonical ensemble framework at the zero-temperature limit. The resulting grand potential functional of the NDR ensemble affords the variational determination of the ground state energy, its NDR (ensemble), and select ionization potentials and electron affinities. The NDR functional theory can be viewed as an "exactification" of orbital optimization and empirical generalized KS methods. NDR functionals depending on the noninteracting Hamiltonian do not require troublesome KS-inversion or optimized effective potentials.
RESUMEN
The synthesis of previously unknown bis(cyclopentadienyl) complexes of the first transition metal, i.e., Sc(II) scandocene complexes, has been investigated using C5H2(tBu)3 (Cpttt), C5Me5 (Cp*), and C5H3(SiMe3)2 (Cpâ³) ligands. Cpttt2ScI, 1, formed from ScI3 and KCpttt, can be reduced with potassium graphite (KC8) in hexanes to generate dark-red crystals of the first crystallographically characterizable bis(cyclopentadienyl) scandium(II) complex, Cpttt2Sc, 2. Complex 2 has a 170.6° (ring centroid)-Sc-(ring centroid) angle and exhibits an eight-line EPR spectrum characteristic of Sc(II) with Aiso = 82.6 MHz (29.6 G). It sublimes at 200 °C at 10-4 Torr and has a melting point of 268-271 °C. Reductions of Cp*2ScI and Cpâ³2ScI under analogous conditions in hexanes did not provide new Sc(II) complexes, and reduction of Cp*2ScI in benzene formed the Sc(III) phenyl complex, Cp*2Sc(C6H5), 3, by C-H bond activation. However, in Et2O and toluene, reduction of Cp*2ScI at -78 °C gives a dark-red solution, 4, which displays an eight-line EPR pattern like that of 1, but it did not provide thermally stable crystals. Reduction of Cpâ³2ScI, in THF or Et2O at -35 °C in the presence of 2.2.2-cryptand, yields the green Sc(II) metallocene iodide complex, [K(crypt)][Cpâ³2ScI], 5, which was identified by X-ray crystallography and EPR spectroscopy and is thermally unstable. The analogous reaction of Cp*2ScI with KC8 and 18-crown-6 in Et2O gave the ligand redistribution product, [Cp*2Sc(18-crown-6-κ2O,O')][Cp*2ScI2], 6, as the only crystalline product. Density functional theory calculations on the electronic structure of these compounds are reported in addition to a steric analysis using the Guzei method.
RESUMEN
Computational studies of the coordination chemistry and bonding of lanthanides have grown in recent decades as the need for understanding the distinct physical, optical, and magnetic properties of these compounds increased. Density functional theory (DFT) methods offer a favorable balance of computational cost and accuracy in lanthanide chemistry and have helped to advance the discovery of novel oxidation states and electronic configurations. This Frontier article examines the scope and limitations of DFT in interpreting structural and spectroscopic data of low-valent lanthanide complexes, elucidating periodic trends, and predicting their properties and reactivity, presented through selected examples.
RESUMEN
Gauge invariance is a fundamental symmetry connected to charge conservation and is widely accepted as indispensable for any electronic structure method. Hence, the gauge variance of the time-dependent kinetic energy density τ used in many meta-generalized gradient approximations (MGGAs) to the exchange-correlation (XC) functional presents a major obstacle for applying MGGAs within time-dependent density functional theory (TDDFT). Replacing τ by the gauge-invariant generalized kinetic energy density τÌ significantly improves the accuracy of various functionals for vertical excitation energies [R. Grotjahn, F. Furche, and M. Kaupp. J. Chem. Phys. 2022, 157, 111102]. However, the dependence of the resulting current-MGGAs (cMGGAs) on the paramagnetic current density gives rise to new exchange-correlation kernels and hyper-kernels ignored in previous implementations of quadratic and higher-order response properties. Here we report the first implementation of cMGGAs and hybrid cMGGAs for excited-state gradients and dipole moments, as well as an extension to quadratic response properties including dynamic hyperpolarizabilities and two-photon absorption cross sections. In the first comprehensive benchmark study of MGGAs and cMGGAs for two-photon absorption cross sections, the M06-2X functional is found to be superior to the GGA hybrid PBE0. Additionally, two case studies from the literature for the practical prediction of nonlinear optical properties are revisited and potential advantages of hybrid (c)MGGAs compared to hybrid GGAs are discussed. The effect of restoring gauge invariance varies depending on the employed MGGA functional, the type of excitation, and the property under investigation: While some individual excited-state equilibrium structures are significantly affected, on average, these changes result in marginal improvements when compared against high-level reference data. Although the gauge-variant MGGA quadratic response properties are generally close to their gauge-invariant counterparts, the resulting errors are not bounded and significantly exceed typical method errors in some of the cases studied. Despite the limited effects seen in benchmark studies, gauge-invariant implementations of cMGGAs for excited-state properties are desirable from a fundamental perspective, entail little additional computational cost, and are necessary for response properties consistent with cMGGA linear response calculations such as excitation energies.
RESUMEN
TURBOMOLE is a highly optimized software suite for large-scale quantum-chemical and materials science simulations of molecules, clusters, extended systems, and periodic solids. TURBOMOLE uses Gaussian basis sets and has been designed with robust and fast quantum-chemical applications in mind, ranging from homogeneous and heterogeneous catalysis to inorganic and organic chemistry and various types of spectroscopy, light-matter interactions, and biochemistry. This Perspective briefly surveys TURBOMOLE's functionality and highlights recent developments that have taken place between 2020 and 2023, comprising new electronic structure methods for molecules and solids, previously unavailable molecular properties, embedding, and molecular dynamics approaches. Select features under development are reviewed to illustrate the continuous growth of the program suite, including nuclear electronic orbital methods, Hartree-Fock-based adiabatic connection models, simplified time-dependent density functional theory, relativistic effects and magnetic properties, and multiscale modeling of optical properties.
RESUMEN
Dinoflagellate luciferin bioluminescence is unique since it does not rely on decarboxylation but is poorly understood compared to that of firefly, bacteria, and coelenterata luciferins. Here we computationally investigate possible protonation states, stereoisomers, a chemical mechanism, and the dynamics of the bioluminescence intermediate that is responsible for chemiexcitation. Using semiempirical dynamics, time-dependent density functional theory static calculations, and a correlation diagram, we find that the intermediate's functional group that is likely responsible for chemiexcitation is a 4-member ring, a dioxetanol, that undergoes [2π + 2π] cycloreversion and the biolumiphore is the cleaved structure. The simulated emission spectra and luciferase-dependent absorbance spectra agree with the experimental data, giving support to our proposed mechanism and biolumiphore. We also compute circular dichroism spectra of the intermediate's four stereoisomers to guide future experiments in differentiating them.
Asunto(s)
Dinoflagelados , Luciferina de Luciérnaga , Luciferina de Luciérnaga/química , Luciferinas , Estereoisomerismo , Mediciones LuminiscentesRESUMEN
We present the design and implementation of libkrylov, an open-source library for solving matrix-free eigenvalue, linear, and shifted linear equations using Krylov subspace methods. The primary objectives of libkrylov are flexible API design and modular structure, which enables integration with specialized matrix-vector evaluation "engines." Libkrylov features pluggable preconditioning, orthonormalization, and tunable convergence control. Diagonal (conjugate gradient, CG), Davidson, and Jacobi-Davidson preconditioners are available, along with orthonormal and nonorthonormal (nKs) schemes. All functionality of libkrylov is exposed via Fortran and C application programming interfaces (APIs). We illustrate the performance of libkrylov for eigenvalue calculations arising in time-dependent density functional theory (TDDFT) in the Tamm-Dancoff approximation (TDA) and discuss the convergence behavior as a function of preconditioning and orthonormalization methods.
RESUMEN
The sterically bulky aryloxide ligand OAr* (OAr* = -OC6H2-Ad2-2,6tBu-4; Ad = 1-adamantyl) has been used to generate Ln(II) complexes across the lanthanide series that are more thermally stable than complexes of any other ligand system reported to date for 4fnd1 Ln(II) ions. The Ln(III) precursors Ln(OAr*)3 (1-Ln) were synthesized by reacting 1.2 equiv of Ln(NR2)3 (R = SiMe3) with 3 equiv of HOAr* for Ln = La, Ce, Nd, Gd, Dy, Yb, and Lu. 1-Ce, 1-Nd, 1-Gd, 1-Dy, and 1-Lu were identified by single-crystal X-ray diffraction studies. Reductions of 1-Ln with potassium graphite (KC8) in tetrahydrofuran in the presence of 2.2.2-cryptand (crypt) yielded the Ln(II) complexes [K(crypt)][Ln(OAr*)3] (2-Ln). The 2-Ln complexes for Ln = Nd, Gd, Dy, and Lu were characterized by X-ray crystallography and found to have Ln-O bond distances 0.038-0.087 Å longer than those of their 1-Ln analogues; this is consistent with 4fn5d1 electron configurations. The structure of 2-Yb has Yb-O distances 0.167 Å longer than those predicted for 1-Yb, which is consistent with a 4f14 electron configuration. Although 2-La and 2-Ce proved to be challenging to isolate, with 18-crown-6 (18-c-6) as the potassium chelator, La(II) and Ce(II) complexes with OAr* could be isolated and crystallographically characterized: [K(18-c-6)][Ln(OAr*)3] (3-Ln). The Ln(II) complexes decompose at room temperature more slowly than other previously reported 4fn5d1 Ln(II) complexes. For example, only 30% decomposition of 2-Dy was observed after 30 h at room temperature compared to complete decomposition of [Dy(OAr')3]- and [DyCp'3]- under similar conditions (OAr' = OC6H2-2,6-tBu2-4-Me; Cp' = C5H4SiMe3).
RESUMEN
An analytical implementation of static dipole polarizabilities within the generalized Kohn-Sham semicanonical projected random phase approximation (GKS-spRPA) method for spin-restricted closed-shell and spin-unrestricted open-shell references is presented. General second-order analytical derivatives of the GKS-spRPA energy functional are derived using a Lagrangian approach. By resolution-of-the-identity and complex frequency integration methods, an asymptotic O(N4â¡log(N)) scaling of operation count and O(N3) scaling of storage is realized, i.e., the computational requirements are comparable to those for GKS-spRPA ground state energies. GKS-spRPA polarizabilities are assessed for small molecules, conjugated long-chain hydrocarbons, metallocenes, and metal clusters, by comparison against Hartree-Fock (HF), semilocal density functional approximations (DFAs), second-order Møller-Plesset perturbation theory, range-separated hybrids, and experimental data. For conjugated polydiacetylene and polybutatriene oligomers, GKS-spRPA effectively addresses the "overpolarization" problem of semilocal DFAs and the somewhat erratic behavior of post-PBE RPA polarizabilities without empirical adjustments. The ensemble averaged GKS-spRPA polarizabilities of sodium clusters (Nan for n = 2, 3, , 10) exhibit a mean absolute deviation comparable to PBE with significantly fewer outliers than HF. In conclusion, analytical second-order derivatives of GKS-spRPA energies provide a computationally viable and consistent approach to molecular polarizabilities, including systems prohibitive for other methods due to their size and/or electronic structure.
RESUMEN
The utility of γ irradiation for generating unstable, low oxidation state molecular species containing rare-earth metal ions in frozen solution has been examined. The method was evaluated by irradiating Ln(III) precursors (Ln = Sc, Y, and La) in a solid matrix of 2-methyltetrahydrofuran at 77 K with a 700 keV 137Cs source to generate free electrons capable of reducing the Ln(III) species. These experiments yielded EPR and UV-visible spectroscopic data that matched those of the known Ln(II) species [(C5H4SiMe3)3YII]1-, [(C5H4SiMe3)3LaII]1-, and {ScII[N(SiMe3)2]3}1-. Irradiation of the La(III) complex LaIII[N(SiMe3)2]3 by this method gave EPR and UV-visible absorption spectra consistent with {LaII[N(SiMe3)2]3}1-, a species that had previously eluded preparation by chemical reduction. Specifically, the irradiation product exhibited an axial EPR spectrum split into eight lines by the I = 7/2 139La nucleus (g⥠= 1.98, g|| = 2.06, Aave = 519.1 G). The UV-visible absorption spectrum contains broad bands centered at 390 and 670 nm that are consistent with a La(II) ion in a trigonal ligand environment based on time-dependent density functional theory which qualitatively reproduces the observed spectrum. Additionally, the rate of formation of the [(C5H4SiMe3)3YII]1- species during the irradiation of (C5H4SiMe3)3YIII was monitored by measuring the concentration via UV-visible spectroscopy over time to provide data on the rate at which a molecular species is reduced in a glass via γ irradiation.
Asunto(s)
Complejos de Coordinación , Metales de Tierras Raras , Modelos Moleculares , Ligandos , Iones/químicaRESUMEN
It has been known for more than a decade that the gauge variance of the kinetic energy density τ leads to additional terms in the magnetic orbital rotation Hessian used in linear-response time-dependent density functional theory (TDDFT), affecting excitation energies obtained with τ-dependent exchange-correlation functionals. While previous investigations found that a correction scheme based on the paramagnetic current density has a small effect on benchmark results, we report more pronounced effects here, in particular, for the popular M06-2X functional and for some other meta-generalized gradient approximations (mGGAs). In the first part of this communication, this is shown by a reassessment of a set of five Ni(II) complexes for which a previous benchmark study that did not impose gauge invariance has found surprisingly large errors for excitation energies obtained with M06-2X. These errors are more than halved by restoring gauge invariance. The variable importance of imposing gauge invariance for different mGGA-based functionals can be rationalized by the derivative of the mGGA exchange energy integrand with respect to τ. In the second part, a large set of valence excitations in small main-group molecules is analyzed. For M06-2X, several selected n â π* and πâπ⥠* excitations are heavily gauge-dependent with average changes of -0.17 and -0.28 eV, respectively, while πâπâ * excitations are marginally affected (-0.04 eV). Similar patterns, but of the opposite signs, are found for SCAN0. The results suggest that reevaluation of previous gauge variant TDDFT results based on M06-2X and other mGGA functionals is warranted.
RESUMEN
Examination of the reduction chemistry of Nd(NR2)3 (R = SiMe3) under N2 has provided connections between the in situ Ln(III)-based LnIII(NR2)3/K reductions of N2 that form side-on bound neutral (N=N)2- complexes, [(R2N)2(THF)Ln]2[µ-η2:η2-N2], and the Ln(II)-based [LnII(NR2)3]1- reductions by Sc, Gd, and Tb that form end-on bound (N=N)2- complexes, {[(R2N)3Ln]2[µ-η1:η1-N2]}2-, which are dianions. The reduction of Nd(NR2)3 by KC8 under dinitrogen in Et2O in the presence of 18-crown-6 (18-c-6) forms dark yellow solutions of [K2(18-c-6)3]{[(R2N)3Nd]2N2} at low temperatures that become green as they warm up to -35 °C in a glovebox freezer. Green crystals obtained from the solution turn yellow-brown when cooled below -100 °C, and the yellow-brown compound has an end-on Nd2(µ-η1:η1-N2) structure. The yellow-brown crystals isomerize in the solid state on the diffractometer upon warming, and at -25 °C, the crystals are green and have a side-on Nd2(µ-η2:η2-N2) structure. Collection of X-ray diffraction data at 10 °C intervals from -50 to -90 °C revealed that the isomerization occurs at temperatures below -100 °C. In the presence of tetrahydrofuran (THF), the dianionic {[(R2N)3Nd]2N2}2- system can lose an amide ligand to provide the monoanionic [(R2N)3NdIII(µ-η2:η2-N2)NdIII(NR2)2(THF)]1-, characterized by X-ray crystallography. These data suggest a connection between the in situ Ln(III)/K reductions and Ln(II) reductions that depends on solvent, temperature, the presence of a chelate, and the specific rare-earth metal.
Asunto(s)
Amidas , Furanos , Isomerismo , Ligandos , Modelos Moleculares , SolventesRESUMEN
Heteroleptic U(III) complexes supported by bis(cyclopentadienyl) frameworks have been synthesized to examine their suitability as precursors to U(II) complexes. The newly synthesized (C5Me5)2U(OC6H2tBu2-2,6-Me-4), (C5Me5)2U(OC6H2Ad2-2,6-tBu-4) (Ad = 1-adamantyl), (C5Me5)2U(C5H5), and (C5Me5)2U(C5Me4H) are compared with (C5Me5)2U[N(SiMe3)2], (C5Me5)2U[CH(SiMe3)2], and (C5Me5)U[N(SiMe3)2]2. An improved synthesis of (C5Me5)2U(µ-Ph)2BPh2 was developed, which was used to synthesize (C5Me5)2U(C5Me4H). Since the X-ray crystal structure of (C5Me5)2U(OC6H2tBu2-2,6-Me-4) contained two very different molecules in the asymmetric unit with 115.7(5)° and 166.0(5)° U-O-Cipso angles, the (C5Me4H)2U(OC6H2tBu2-2,6-Me-4) and (C5Me5)2Ce(OC6H2tBu2-2,6-Me-4) analogues were synthesized and characterized by X-ray diffraction for comparison. Electrochemical studies in THF with a 100 mM [nBu4N][BPh4] supporting electrolyte showed U(IV)/U(III) and U(III)/U(II) redox couples for all the heteroleptic complexes except (C5Me5)2U(C5H5). Chemical reduction of all heteroleptic compounds formed dark blue solutions characteristic of U(II) when reacted with KC8 at -78 °C, but none formed isolable U(II) complexes. The targeted U(II) complexes, [(C5Me5)2U(OC6H2tBu2-2,6-Me-4)]1-, {(C5Me5)2U[CH(SiMe3)2]}1-, [(C5Me5)2U(C5H5)]1-, and [(C5Me5)2U(C5Me4H)]1-, were analyzed by density functional theory, and a 5f36d1 electron configuration was found to be the ground state in each case.