Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Intervalo de año de publicación
1.
J Antimicrob Chemother ; 79(8): 1820-1830, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38853496

RESUMEN

BACKGROUND: The upsurge of antimicrobial resistance demands innovative strategies to fight bacterial infections. With traditional antibiotics becoming less effective, anti-virulence agents or pathoblockers, arise as an alternative approach that seeks to disarm pathogens without affecting their viability, thereby reducing selective pressure for the emergence of resistance mechanisms. OBJECTIVES: To elucidate the mechanism of action of compound N'-(thiophen-2-ylmethylene)benzohydrazide (A16B1), a potent synthetic hydrazone inhibitor against the Salmonella PhoP/PhoQ system, essential for virulence. MATERIALS AND METHODS: The measurement of the activity of PhoP/PhoQ-dependent and -independent reporter genes was used to evaluate the specificity of A16B1 to the PhoP regulon. Autokinase activity assays with either the native or truncated versions of PhoQ were used to dissect the A16B1 mechanism of action. The effect of A16B1 on Salmonella intramacrophage replication was assessed using the gentamicin protection assay. The checkerboard assay approach was used to analyse potentiation effects of colistin with the hydrazone. The Galleria mellonella infection model was chosen to evaluate A16B1 as an in vivo therapy against Salmonella. RESULTS: A16B1 repressed the Salmonella PhoP/PhoQ system activity, specifically targeting PhoQ within the second transmembrane region. A16B1 demonstrates synergy with the antimicrobial peptide colistin, reduces the intramacrophage proliferation of Salmonella without being cytotoxic and enhances the survival of G. mellonella larvae systemically infected with Salmonella. CONCLUSIONS: A16B1 selectively inhibits the activity of the Salmonella PhoP/PhoQ system through a novel inhibitory mechanism, representing a promising synthetic hydrazone compound with the potential to function as a Salmonella pathoblocker. This offers innovative prospects for combating Salmonella infections while mitigating the risk of antimicrobial resistance emergence.


Asunto(s)
Antibacterianos , Proteínas Bacterianas , Infecciones por Salmonella , Animales , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Infecciones por Salmonella/tratamiento farmacológico , Infecciones por Salmonella/microbiología , Mariposas Nocturnas/microbiología , Modelos Animales de Enfermedad , Salmonella typhimurium/efectos de los fármacos , Salmonella typhimurium/genética , Colistina/farmacología , Pruebas de Sensibilidad Microbiana , Hidrazonas/farmacología , Hidrazonas/uso terapéutico , Sinergismo Farmacológico , Virulencia/efectos de los fármacos , Histidina Quinasa/antagonistas & inhibidores , Histidina Quinasa/genética , Regulación Alostérica/efectos de los fármacos
2.
Nat Prod Bioprospect ; 14(1): 35, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38822174

RESUMEN

The generation of chemically engineered essential oils (CEEOs) prepared from bi-heteroatomic reactions using ammonium thiocyanate as a source of bioactive compounds is described. The impact of the reaction on the chemical composition of the mixtures was qualitatively demonstrated through GC-MS, utilizing univariate and multivariate analysis. The reaction transformed most of the components in the natural mixtures, thereby expanding the chemical diversity of the mixtures. Changes in inhibition properties between natural and CEEOs were demonstrated through acetylcholinesterase TLC autography, resulting in a threefold increase in the number of positive events due to the modification process. The chemically engineered Origanum vulgare L. essential oil was subjected to bioguided fractionation, leading to the discovery of four new active compounds with similar or higher potency than eserine against the enzyme. The results suggest that the directed chemical transformation of essential oils can be a valuable strategy for discovering new acetylcholinesterase (AChE) inhibitors.

3.
Braz. J. Pharm. Sci. (Online) ; 58: e19238, 2022. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1374561

RESUMEN

Abstract The aim of this work is to study three cultivars of artichoke (Cynara cardunculus var. scolymus): Gauchito, Guri and Oro Verde in terms of their in vitro chemoprevention and anti-inflammatory properties. These cultivars show good productive performance. The phenolic composition of their fresh leaves and edible bracts was analyzed by high performance liquid chromatography and high resolution mass spectrometry (HPLC-HRMS), showing mainly caffeoylquinic acids and flavonoids. Caffeoylquinic acids were quantified and the highest content was found in Gauchito cultivar. In this cultivar, the content of dicaffeoylquinic acids in fresh bracts was six times higher than that in fresh leaves (10064.5 ± 378.3 mg/kg versus 1451.0 ± 209.3 mg/kg respectively). Luteolin flavonoids were detected in leaves. The extracts from fresh bracts and leaves were assessed in their in vitro bioactivity against human neuroblastoma cells (SH-SY5Y). Inhibition of SH-SY5Y cells proliferation by Gauchito and Guri leaf extracts (8 µg/mL) was higher than 50 %. The leaf extracts of the same cultivars showed an inhibitory effect on human interferon IFN-I, decreasing its activity 50% at 40 µg/mL. Interestingly, the bract extracts did not show in vitro bioactivity at these concentrations, nor did the pure compounds chlorogenic acid, cynarin, apigenin and luteolin (at 2 µg/mL). These results suggest that Gauchito and Guri leaf extracts have potential for human neuroblastoma chemoprevention and treatment of inflammatory processes.


Asunto(s)
Hojas de la Planta/clasificación , Quimioprevención , Cynara scolymus/metabolismo , Antiinflamatorios/farmacología , Espectrometría de Masas/métodos , Extractos Vegetales/análisis , Cromatografía Líquida de Alta Presión/métodos , Compuestos Fenólicos , Neuroblastoma/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...