Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cells ; 10(12)2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34944079

RESUMEN

Using a mathematical simulation approach, we studied the dynamics of the green microalga Chlorella vulgaris phosphate metabolism response to shortage and subsequent replenishing of inorganic phosphate in the medium. A three-pool interaction model was used to describe the phosphate uptake from the medium, its incorporation into the cell organic compounds, its storage in the form of polyphosphates, and culture growth. The model comprises a system of ordinary differential equations. The distribution of phosphorous between cell pools was examined for three different stages of the experiment: growth in phosphate-rich medium, incubation in phosphate-free medium, and phosphate addition to the phosphorus-starving culture. Mathematical modeling offers two possible scenarios for the appearance of the peak of polyphosphates (PolyP). The first scenario explains the accumulation of PolyP by activation of the processes of its synthesis, and the decline in PolyP is due to its redistribution between dividing cells during growth. The second scenario includes a hysteretic mechanism for the regulation of PolyP hydrolysis, depending on the intracellular content of inorganic phosphate. The new model of the dynamics of P pools in the cell allows one to better understand the phenomena taking place during P starvation and re-feeding of the P-starved microalgal cultures with inorganic phosphate such as transient PolyP accumulation. Biotechnological implications of the observed dynamics of the polyphosphate pool of the microalgal cell are considered. An approach enhancing the microalgae-based wastewater treatment method based on these scenarios is proposed.


Asunto(s)
Chlorella vulgaris/metabolismo , Fosfatos/metabolismo , Fósforo/deficiencia , Fósforo/farmacología , Recuento de Células , Células Cultivadas , Chlorella vulgaris/efectos de los fármacos , Chlorella vulgaris/crecimiento & desarrollo , Microalgas/efectos de los fármacos , Microalgas/metabolismo , Modelos Biológicos , Polifosfatos/metabolismo
2.
Photosynth Res ; 116(1): 55-78, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23949414

RESUMEN

The values of gross metabolic flows in cells are essentially interconnected due to conservation laws of chemical elements and interrelations of biochemical coupling. Therefore, the overall stoichiometry of cellular metabolism, such as the biomass quantum yield, the ratio between linear and circular flows via the electron transport chain, etc., can be calculated using balances of metabolic flows in the network branching points and coupling ratios related to ATP formation and expenditures. This work has studied the energetic stoichiometry of photosynthetic cells by considering the transfer of reductivity in the course of biochemical reactions. This approach yielded rigorous mathematical expressions for biomass quantum yield and other integral bioenergetic indices of cellular growth as functions of ATP balance parameters. The effect of cellular substance turnover has been taken into account. The obtained theoretical estimation of biomass quantum yield is rather close to experimental data which confirms the predictive capacity of this approach.


Asunto(s)
Metabolismo Energético , Oxígeno/farmacología , Procesos Fototróficos/efectos de los fármacos , Biomasa , Transporte de Electrón/efectos de los fármacos , Cinética , Modelos Biológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...