Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Plant Cell Physiol ; 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38590039

RESUMEN

Brassinosteroids (BRs) are plant steroid hormones that control growth and stress responses. In the context of development, BRs play diverse roles in controlling cell differentiation and tissue patterning. The vascular system, which is essential for transporting water and nutrients throughout the plant body, initially establishes a tissue pattern during primary development and then dramatically increases the number of vascular cells during secondary development. This complex developmental process is properly regulated by a network consisting of various hormonal signalling pathways. Genetic studies have revealed that mutants defective in BR biosynthesis or the BR signalling cascade exhibit a multifaceted vascular development phenotype. Furthermore, BR crosstalk with other plant hormones, including peptide hormones, coordinately regulates vascular development. Recently, the involvement of BR in vascular development, especially in xylem differentiation, has also been suggested in plant species other than the model plant Arabidopsis thaliana. In this review, we briefly summarize the recent findings on the roles of BR in primary and secondary vascular development in Arabidopsis and other species.

3.
Nat Plants ; 10(5): 785-797, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38605238

RESUMEN

Gametogenesis, which is essential to the sexual reproductive system, has drastically changed during plant evolution. Bryophytes, lycophytes and ferns develop reproductive organs called gametangia-antheridia and archegonia for sperm and egg production, respectively. However, the molecular mechanism of early gametangium development remains unclear. Here we identified a 'non-canonical' type of BZR/BES transcription factor, MpBZR3, as a regulator of gametangium development in a model bryophyte, Marchantia polymorpha. Interestingly, overexpression of MpBZR3 induced ectopic gametangia. Genetic analysis revealed that MpBZR3 promotes the early phase of antheridium development in male plants. By contrast, MpBZR3 is required for the late phase of archegonium development in female plants. We demonstrate that MpBZR3 is necessary for the successful development of both antheridia and archegonia but functions in a different manner between the two sexes. Together, the functional specialization of this 'non-canonical' type of BZR/BES member may have contributed to the evolution of reproductive systems.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Haploidia , Marchantia , Proteínas de Plantas , Factores de Transcripción , Marchantia/genética , Marchantia/crecimiento & desarrollo , Marchantia/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reproducción/genética , Células Germinativas de las Plantas/crecimiento & desarrollo , Células Germinativas de las Plantas/metabolismo
4.
Genes Genet Syst ; 98(2): 89-92, 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37331806

RESUMEN

Members of a plant-specific BES/BZR transcription factor (TF) family including BRI1-EMS-SUPPRESSOR 1 (BES1) and BRASSINAZOLE-RESISTANT 1 (BZR1) regulate various developmental processes and environmental responses. Recently, we reported that BES1/BZR1 Homolog 3 (BEH3) exhibited a competitive effect toward other BES/BZR TFs. In this study, we analyzed transcriptome profiles in BEH3-overexpressing plants and compared them with those of BES1 and BZR1 double gain-of-function mutants. We identified 46 differentially expressed genes (DEGs), which were downregulated in the gain-of-function mutants of BES1 and BZR1 but upregulated upon BEH3 overexpression. In these DEGs, putative BES1 and BZR1 direct-targeted genes were highly enriched. In addition, these DEGs contained not only known brassinosteroid biosynthetic enzymes, but also some NAC TFs, which negatively regulate brassinosteroid-inactivating enzymes. Moreover, the iron sensor and the iron-deficient response-related bHLH TFs were also included. Taken together, our findings indicate that a competitive relationship between BEH3 and other BES/BZR TFs exists in various BES/BZR binding target genes.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Unión al ADN/genética , Transcriptoma , Brasinoesteroides/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas
5.
Plant Cell Physiol ; 64(12): 1511-1522, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37130085

RESUMEN

Plants produce sugars by photosynthesis and use them for growth and development. Sugars are transported from source-to-sink organs via the phloem in the vasculature. It is well known that vascular development is precisely controlled by plant hormones and peptide hormones. However, the role of sugars in the regulation of vascular development is poorly understood. In this study, we examined the effects of sugars on vascular cell differentiation using a vascular cell induction system named 'Vascular Cell Induction Culture System Using Arabidopsis Leaves' (VISUAL). We found that sucrose has the strongest inhibitory effect on xylem differentiation, among several types of sugars. Transcriptome analysis revealed that sucrose suppresses xylem and phloem differentiation in cambial cells. Physiological and genetic analyses suggested that sucrose might function through the BRI1-EMS-SUPPRESSOR1 transcription factor, which is the central regulator of vascular cell differentiation. Conditional overexpression of cytosolic invertase led to a decrease in the number of cambium layers due to an imbalance between cell division and differentiation. Taken together, our results suggest that sucrose potentially acts as a signal that integrates environmental conditions with the developmental program.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Cámbium/genética , Cámbium/metabolismo , Diferenciación Celular/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Floema/metabolismo , Xilema/metabolismo , Azúcares/metabolismo
6.
Plant Cell Physiol ; 64(3): 274-283, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36398989

RESUMEN

The vascular system plays pivotal roles in transporting water and nutrients throughout the plant body. Primary vasculature is established as a continuous strand, which subsequently initiates secondary growth through cell division. Key factors regulating primary and secondary vascular developments have been identified in numerous studies, and the regulatory networks including these factors have been elucidated through omics-based approaches. However, the vascular system is composed of a variety of cells such as xylem and phloem cells, which are commonly generated from vascular stem cells. In addition, the vasculature is located deep inside the plant body, which makes it difficult to investigate the vascular development while distinguishing between vascular stem cells and developing xylem and phloem cells. Recent technical advances in the tissue-clearing method, RNA-seq analysis and tissue culture system overcome these problems by enabling the cell-type-specific analysis during vascular development, especially with a special focus on stem cells. In this review, we summarize the recent findings on the establishment and maintenance of vascular stem cells.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , División Celular , Células Madre/metabolismo , Floema , Xilema , Regulación de la Expresión Génica de las Plantas
7.
Plant Biotechnol (Tokyo) ; 39(1): 65-72, 2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35800965

RESUMEN

Plants precisely coordinate the balance between cell proliferation and differentiation to ensure the continuous development. In Arabidopsis thaliana, members of glycogen synthase kinase 3 (GSK3) family, which are highly conserved serine/threonine protein kinases among eukaryotes, play important roles in regulating cell proliferation and differentiation during various developmental processes. However, functional roles of GSK3s in the plant lineages except angiosperms remain to be elucidated. Here, we utilized a model liverwort, Marchantia polymorpha, for studies of GSK3, because it has a single GSK3-like kinase, MpGSK. When M. polymorpha was treated with a chemical compound, bikinin, which is known as a specific inhibitor for GSK3-like kinases, growth and morphologies were altered with an expansion of the meristematic region. Similarly, Mpgsk loss-of-function mutants accumulated undifferentiated cell mass with no differentiated tissues. By contrast, overexpression of MpGSK reduced the size of the meristem region. These results suggest that MpGSK plays important roles as a regulator for the balance between cell differentiation and proliferation in M. polymorpha.

8.
Plant Cell Physiol ; 63(8): 1063-1077, 2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-35674121

RESUMEN

Plant growth and development are regulated by environmental factors, including nutrient availability and light conditions, via endogenous genetic signaling pathways. Phosphorylation-dependent protein modification plays a major role in the regulation of cell proliferation in stress conditions, and several protein kinases have been shown to function in response to nutritional status, including dual-specificity tyrosine phosphorylation-regulated kinases (DYRKs). Although DYRKs are widely conserved in eukaryotes, the physiological functions of DYRKs in land plants are still to be elucidated. In the liverwort Marchantia polymorpha, a model bryophyte, four putative genes encoding DYRK homologous proteins, each of which belongs to the subfamily yet another kinase 1 (Yak1), plant-specific DYRK, DYRK2, or pre-mRNA processing protein 4 kinase, were identified. MpYAK1-defective male and female mutant lines generated by the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated nuclease 9 (Cas9) system showed smaller sizes of thalli than did the wild-type plants and repressed cell divisions in the apical notch regions. The Mpyak1 mutants developed rhizoids from gemmae in the gemma cup before release. The Mpyak1 lines developed sexual organs even in non-inductive short-day photoperiod conditions supplemented with far-red light. In nitrogen (N)-deficient conditions, rhizoid elongation was inhibited in the Mpyak1 mutants. In conditions of aeration with 0.08% CO2 (v/v) and N depletion, Mpyak1 mutants accumulated higher levels of sucrose and lower levels of starch compared to the wild type. Transcriptomic analyses revealed that the expression of peroxidase genes was differentially affected by MpYAK1. These results suggest that MpYAK1 is involved in the maintenance of plant growth and developmental responses to light conditions and nutrient signaling.


Asunto(s)
Marchantia , División Celular , Marchantia/metabolismo , Nutrientes , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Quinasas/metabolismo
9.
Quant Plant Biol ; 3: e15, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37077981

RESUMEN

Stem cell fates are spatio-temporally regulated during plant development. Time-lapse imaging of fluorescence reporters is the most widely used method for spatio-temporal analysis of biological processes. However, excitation light for imaging fluorescence reporters causes autofluorescence and photobleaching. Unlike fluorescence reporters, luminescence proteins do not require excitation light, and therefore offer an alternative reporter for long-term and quantitative spatio-temporal analysis. We established an imaging system for luciferase, which enabled monitoring cell fate marker dynamics during vascular development in a vascular cell induction system called VISUAL. Single cells expressing the cambium marker, proAtHB8:ELUC, had sharp luminescence peaks at different time points. Furthermore, dual-color luminescence imaging revealed spatio-temporal relationships between cells that differentiated into xylem or phloem, and cells that transitioned from procambium to cambium. This imaging system enables not only the detection of temporal gene expression, but also facilitates monitoring of spatio-temporal dynamics of cell identity transitions at the single cell level.

10.
J Plant Res ; 134(6): 1265-1277, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34549353

RESUMEN

Dual-specificity tyrosine phosphorylation-regulated kinases (DYRKs) are activated via the auto-phosphorylation of conserved tyrosine residues in their activation loop during protein translation, and they then phosphorylate serine/threonine residues on substrates. The DYRK family is widely conserved in eukaryotes and is composed of six subgroups. In plant lineages, DYRK homologs are classified into four subgroups, DYRK2s, yet another kinase1s, pre-mRNA processing factor 4 kinases, and DYRKPs. Only the DYRKP subgroup is plant-specific and has been identified in a wide array of plant lineages, including land plants and green algae. It has been suggested that in Arabidopsis thaliana DYRKPs are involved in the regulation of centripetal nuclear positioning induced by dark light conditions. However, the molecular functions, such as kinase activity and the developmental and physiological roles of DYRKPs are poorly understood. Here, we focused on a sole DYRKP ortholog in the model bryophyte, Marchantia polymorpha, MpDYRKP. MpDYRKP has a highly conserved kinase domain located in the C-terminal region and shares common sequence motifs in the N-terminal region with other DYRKP members. To identify the roles of MpDYRKP in M. polymorpha, we generated loss-of-function Mpdyrkp mutants via genome editing. Mpdyrkp mutants exhibited abnormal, shrunken morphologies with less flattening in their vegetative plant bodies, thalli, and male reproductive organs, antheridial receptacles. The surfaces of the thalli in the Mpdyrkp mutants appeared uneven and disordered. Moreover, their epidermal cells were drastically altered to a narrower shape when compared to the wild type. These results suggest that MpDYRKP acts as a morphological regulator, which contributes to orderly tissue morphogenesis via the regulation of cell shape.


Asunto(s)
Arabidopsis , Marchantia , Arabidopsis/genética , Marchantia/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/genética , Quinasas DyrK
11.
Plant Cell ; 33(8): 2618-2636, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34059919

RESUMEN

In plants, vascular stem cells located in the cambium continuously undergo self-renewal and differentiation during secondary growth. Recent advancements in cell sorting techniques have enabled access to the transcriptional regulatory framework of cambial cells. However, mechanisms underlying the robust control of vascular stem cells remain unclear. Here, we identified a new cambium-related regulatory module through co-expression network analysis using multiple transcriptome datasets obtained from an ectopic vascular cell transdifferentiation system using Arabidopsis cotyledons, Vascular cell Induction culture System Using Arabidopsis Leaves (VISUAL). The cambium gene list included a gene encoding the transcription factor BES1/BZR1 Homolog 3 (BEH3), whose homolog BES1 negatively affects vascular stem cell maintenance. Interestingly, null beh3 mutant alleles showed a large variation in their vascular size, indicating that BEH3 functions as a stabilizer of vascular stem cells. Genetic analysis revealed that BEH3 and BES1 perform opposite functions in the regulation of vascular stem cells and the differentiation of vascular cells in the context of the VISUAL system. At the biochemical level, BEH3 showed weak transcriptional repressor activity and functioned antagonistically to other BES/BZR members by competing for binding to the brassinosteroid response element. Furthermore, mathematical modeling suggested that the competitive relationship between BES/BZR homologs leads to the robust regulation of vascular stem cells.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Proteínas de Unión al ADN/genética , Proteínas de Arabidopsis/metabolismo , Brasinoesteroides/metabolismo , Cámbium/genética , Proteínas de Unión al ADN/metabolismo , Visualización de Datos , Bases de Datos Genéticas , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Hipocótilo/genética , Hipocótilo/crecimiento & desarrollo , Mutación , Floema/genética , Filogenia , Plantas Modificadas Genéticamente , Elementos de Respuesta , Xilema/genética
12.
Plant J ; 105(5): 1390-1399, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33280196

RESUMEN

ANGUSTIFOLIA (AN) is a plant-specific subfamily of the CtBP/BARS/AN family, characterized by a plant-specific C-terminal domain of approximately 200 amino acids. Previously, we revealed that double knockout (DKO) lines of Physcomitrium (Physcomitrella) patens ANGUSTIFOLIA genes (PpAN1-1 and PpAN1-2) show defects in gametophore height and the lengths of the seta and foot region of sporophytes, by reduced cell elongation. In addition to two canonical ANs, the genome of P. patens has two atypical ANs without a coding region for a plant-specific C-terminus (PpAN2-1 and PpAN2-2); these were investigated in this study. Similar to PpAN1s, both promoters of the PpAN2 genes were highly active in the stems of haploid gametophores and in the middle-to-basal region of young diploid sporophytes that develop into the seta and foot. Analyses of PpAN2-1/2-2 DKO and PpAN quadruple knockout (QKO) lines implied that these four AN genes have partially redundant functions to regulate cell elongation in their expression regions. Transgenic strains harboring P. patens α-tubulin fused to green fluorescent protein, which were generated from a QKO line, showed that the orientation of the microtubules in the gametophore tips in the PpAN QKO lines was unchanged from the wild-type and PpAN1-1/1-2 DKO plants. In addition to both PpAN2-1 and PpAN2-2, short Arabidopsis AN without the C-terminus of 200 amino acids could rescue the Arabidopsis thaliana an-1 phenotypes, implying AN activity is dependent on the N-terminal regions.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Bryopsida/metabolismo , Microtúbulos/metabolismo , Proteínas Represoras/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Microtúbulos/genética , Proteínas Represoras/genética
13.
Commun Biol ; 3(1): 184, 2020 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-32322004

RESUMEN

The phloem transports photosynthetic assimilates and signalling molecules. It mainly consists of sieve elements (SEs), which act as "highways" for transport, and companion cells (CCs), which serve as "gates" to load/unload cargos. Though SEs and CCs function together, it remains unknown what determines the ratio of SE/CC in the phloem. Here we develop a new culture system for CC differentiation in Arabidopsis named VISUAL-CC, which almost mimics the process of the SE-CC complex formation. Comparative expression analysis in VISUAL-CC reveals that SE and CC differentiation tends to show negative correlation, while total phloem differentiation is unchanged. This varying SE/CC ratio is largely dependent on GSK3 kinase activity. Indeed, gsk3 hextuple mutants possess many more SEs and fewer CCs, whereas gsk3 gain-of-function mutants partially increase the CC number. Taken together, GSK3 activity appears to function as a cell-fate switch in the phloem, thereby balancing the SE/CC ratio.


Asunto(s)
Arabidopsis/enzimología , Diferenciación Celular , Glucógeno Sintasa Quinasa 3/metabolismo , Floema/enzimología , Plantas Modificadas Genéticamente/enzimología , Arabidopsis/citología , Arabidopsis/genética , Técnicas de Cultivo de Célula , Células Cultivadas , Regulación de la Expresión Génica de las Plantas , Glucógeno Sintasa Quinasa 3/genética , Mutación , Floema/citología , Floema/genética , Plantas Modificadas Genéticamente/citología , Plantas Modificadas Genéticamente/genética , Transducción de Señal
14.
Plant Cell Physiol ; 61(2): 255-264, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-31922574

RESUMEN

Stem cells undergo cell division and differentiation to ensure organized tissue development. Because plant cells are immobile, plant stem cells ought to decide their cell fate prior to differentiation, to locate specialized cells in the correct position. In this study, based on a chemical screen, we isolated a novel secondary cell wall indicator BF-170, which binds to lignin and can be used to image in vitro and in situ xylem development. Use of BF-170 to observe the vascular differentiation pattern in the in vitro vascular cell induction system, VISUAL, revealed that adaxial mesophyll cells of cotyledons predominantly generate ectopic xylem cells. Moreover, phloem cells are abundantly produced on the abaxial layer, suggesting the involvement of leaf adaxial-abaxial polarity in determining vascular cell fate. Analysis of abaxial polarity mutants highlighted the role of YAB3, an abaxial cell fate regulator, in suppressing xylem and promoting phloem differentiation on the abaxial domains in VISUAL. Furthermore, YABBY family genes affected in vivo vascular development during the secondary growth. Our results denoted the possibility that such mediators of spatial information contribute to correctly determine the cell fate of vascular stem cells, to conserve the vascular pattern of land plants.


Asunto(s)
Diferenciación Celular/fisiología , Imagen Óptica/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Células Madre/metabolismo , Compuestos de Anilina , Arabidopsis/citología , Arabidopsis/genética , Pared Celular , Cotiledón/citología , Cotiledón/genética , Cotiledón/crecimiento & desarrollo , Cotiledón/metabolismo , Colorantes Fluorescentes , Genes de Plantas , Lignina/metabolismo , Floema/citología , Floema/genética , Floema/crecimiento & desarrollo , Hojas de la Planta/citología , Raíces de Plantas/citología , Quinolinas , Xilema/citología , Xilema/genética , Xilema/crecimiento & desarrollo
15.
Front Plant Sci ; 10: 1214, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31632430

RESUMEN

The description and evaluation of morphological features are essential to many biological studies. Bioimaging and quantification methods have been developed to analyze the morphological features of plants. However, efficient three-dimensional (3D) imaging and its quantification are still under development, particularly for studies of plant morphology, due to complex organ structure with great flexibility among individuals with the same genotype. In this study, we propose a new approach that combines a 3D imaging technique using micro-computed tomography and a mathematical image-processing method to describe 3D morphological features. As an example, we applied this method to Marchantia polymorpha, a new model plant used for the evolutional study of land plants, and we evaluated a mutant individual with an abnormal 3D shape. Using this new method, we quantitatively described the thallus morphology of M. polymorpha and distinguished the wild type from a mutant with different morphological features. Our newly established method can be applied to various tissues or bodies with irregular 3D morphology.

16.
Plant Physiol ; 179(1): 233-247, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30404821

RESUMEN

During dark adaptation, plant nuclei move centripetally toward the midplane of the leaf blade; thus, the nuclei on both the adaxial and abaxial sides become positioned at the inner periclinal walls of cells. This centripetal nuclear positioning implies that a characteristic cell polarity exists within a leaf, but little is known about the mechanism underlying this process. Here, we show that ANGUSTIFOLIA (AN) and ACTIN7 regulate centripetal nuclear positioning in Arabidopsis (Arabidopsis thaliana) leaves. Two mutants defective in the positioning of nuclei in the dark were isolated and designated as unusual nuclear positioning1 (unp1) and unp2 In the dark, nuclei of unp1 were positioned at the anticlinal walls of adaxial and abaxial mesophyll cells and abaxial pavement cells, whereas the nuclei of unp2 were positioned at the anticlinal walls of mesophyll and pavement cells on both the adaxial and abaxial sides. unp1 was caused by a dominant-negative mutation in ACTIN7, and unp2 resulted from a recessive mutation in AN Actin filaments in unp1 were fragmented and reduced in number, which led to pleiotropic defects in nuclear morphology, cytoplasmic streaming, and plant growth. The mutation in AN caused aberrant positioning of nuclei-associated actin filaments at the anticlinal walls. AN was detected in the cytosol, where it interacted physically with plant-specific dual-specificity tyrosine phosphorylation-regulated kinases (DYRKPs) and itself. The DYRK inhibitor (1Z)-1-(3-ethyl-5-hydroxy-2(3H)-benzothiazolylidene)-2-propanone significantly inhibited dark-induced nuclear positioning. Collectively, these results suggest that the AN-DYRKP complex regulates the alignment of actin filaments during centripetal nuclear positioning in leaf cells.


Asunto(s)
Citoesqueleto de Actina/fisiología , Proteínas de Arabidopsis/fisiología , Arabidopsis/metabolismo , Proteínas Represoras/fisiología , Citoesqueleto de Actina/metabolismo , Arabidopsis/genética , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/análisis , Proteínas de Arabidopsis/genética , Núcleo Celular/metabolismo , Núcleo Celular/ultraestructura , Luz , Modelos Biológicos , Proteínas Represoras/análisis , Proteínas Represoras/genética
17.
FEBS Lett ; 592(19): 3327-3334, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30193004

RESUMEN

The MEKK1 kinase is a key regulator of stress signaling in Arabidopsis; however, little is known about the regulation of its kinase activity. Here, we found that recombinant MEKK1, expressed in both mammalian HEK293 cells and Escherichia coli, shows a mobility shift in SDS-PAGE, and immunoblotting detected phosphorylation of serine, threonine, and tyrosine residues. N-terminal deletions, site-directed mutagenesis, and protein phosphatase treatment revealed that the mobility shift results from autophosphorylation of the kinase domain. We identified the tyrosine autophosphorylation sites in the N-terminal region of MEKK1. Tyrosine to phenylalanine mutations decrease phosphorylation of the substrate MKK1, suggesting the important role of this residue in the regulation of MEKK1 kinase activity. The present study is the first to show that plant MAPKKKs are regulated by tyrosine phosphorylation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Quinasas Quinasa Quinasa PAM/metabolismo , Tirosina/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sitios de Unión/genética , Escherichia coli/genética , Células HEK293 , Humanos , MAP Quinasa Quinasa 1/metabolismo , Quinasas Quinasa Quinasa PAM/genética , Mutación Missense , Fenilalanina/genética , Fenilalanina/metabolismo , Fosforilación , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Tirosina/genética
18.
Development ; 145(18)2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30126903

RESUMEN

Arabidopsis thaliana mutants deficient in ANGUSTIFOLIA (AN) exhibit several phenotypes at the sporophyte stage, such as narrow and thicker leaves, trichomes with two branches, and twisted fruits. It is thought that these phenotypes are caused by abnormal arrangement of cortical microtubules (MTs). AN homologs are present in the genomes of diverse land plants, including the basal land plant Marchantia polymorpha, and their molecular functions have been shown to be evolutionarily conserved in terms of the ability to complement the A. thaliana an-1 mutation. However, the roles of ANs in bryophytes, the life cycle of which includes a dominant haploid gametophyte generation, remain unknown. Here, we have examined the roles of AN homologs in the model bryophyte M. polymorpha (MpAN). Mpan knockout mutants showed abnormal twisted thalli and suppressed thallus growth along the growth axis. Under weak blue light conditions, elongated thallus growth was observed in wild-type plants, whereas it was suppressed in the mutants. Moreover, disordered cortical MT orientations were observed. Our findings suggest that MpAN contributes to three-dimensional morphogenesis by regulating cortical MT arrangement in the gametophytes of bryophytes.


Asunto(s)
Marchantia/embriología , Morfogénesis/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Arabidopsis/embriología , Proteínas de Arabidopsis , Técnicas de Inactivación de Genes , Células Germinativas de las Plantas/crecimiento & desarrollo , Marchantia/genética
19.
Development ; 145(7)2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29567670

RESUMEN

Regulation of cell proliferation is crucial for establishing the shape of plant leaves. We have identified MAKIBA3 (MKB3), a loss-of-function mutant of which exhibits a narrowed- and rolled-leaf phenotype in rice. MKB3 was found to be an ortholog of Arabidopsis ANGUSTIFOLIA3 (AN3), which positively regulates cell proliferation. The reduced leaf size of mkb3 plants with enlarged cells and the increased size of MKB3-overexpressing leaves with normal-sized cells indicate that MKB3 is a positive regulator of leaf proliferation and that mkb3 mutation triggers a compensation syndrome, as does Arabidopsis an3 Expression analysis revealed that MKB3 is predominantly expressed on the epidermis of leaf primordia, which is different from the location of AN3 A protein movement assay demonstrated that MKB3 moves from an MKB3-expressing domain to a non-expressing domain, which is required for normal leaf development. Our results suggest that rice MKB3 and Arabidopsis AN3 have conserved functions and effects on leaf development. However, the expression pattern of MKB3 and direction of protein movement are different between rice and Arabidopsis, which might reflect differences in leaf primordia development in these two species.


Asunto(s)
Arabidopsis/metabolismo , Proliferación Celular/genética , Oryza/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Transactivadores/metabolismo , Proteínas de Arabidopsis/metabolismo , Aumento de la Célula , Regulación de la Expresión Génica de las Plantas , Mutación , Oryza/genética , Fenotipo , Hojas de la Planta/metabolismo , Transactivadores/genética
20.
Plant Mol Biol ; 87(6): 565-75, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25680457

RESUMEN

Abscisic acid (ABA) is a phytohormone that regulates many physiological functions, such as plant growth, development and stress responses. The MAPK cascade plays an important role in ABA signal transduction. Several MAPK and MAPKK molecules are reported to function in ABA signaling; however, there have been few studies related to the identification of MAPKKK upstream of MAPKK in ABA signaling. In this study, we show that an Arabidopsis MAPKKK, MAPKKK18 functions in ABA signaling. The expression of MAPKKK18 was induced by ABA treatment. Yeast two-hybrid analysis revealed that MAPKKKK18 interacted with MKK3, which interacted with C-group MAPK, MPK1/2/7. Immunoprecipitated kinase assay showed that the 3xFlag-tagged MAPKKK18, expressed in Arabidopsis plants, was activated when treated with ABA. These results indicate the possibility that the MAPK cascade is composed of MAPKKK18, MKK3 and MPK1/2/7 in ABA signaling. The transgenic plants overexpressing MAPKKK18 (35S:MAPKKK18) and its kinase negative mutant (35S:MAPKKK18 KN) were generated, and their growth was monitored. Compared with the WT plant, 35S:MAPKKK18 and 35S:MAPKKK18 KN showed smaller and bigger phenotypes, respectively. Senescence of the rosette leaves was promoted in 35S:MAPKKK18, but suppressed in 35S:MAPKKK18 KN. Furthermore, ABA-induced leaf senescence was accelerated in 35S:MAPKKK18. These results suggest that MAPKKK18 controls the plant growth by adjusting the timing of senescence via its protein kinase activity in ABA dependent manners.


Asunto(s)
Ácido Abscísico/farmacología , Proteínas de Arabidopsis/genética , Arabidopsis/enzimología , Regulación de la Expresión Génica de las Plantas , Quinasas Quinasa Quinasa PAM/genética , Reguladores del Crecimiento de las Plantas/farmacología , Transducción de Señal , Secuencia de Aminoácidos , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/metabolismo , Expresión Génica , Quinasas Quinasa Quinasa PAM/metabolismo , Fosforilación , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Plantas Modificadas Genéticamente , Proteínas Recombinantes , Plantones/efectos de los fármacos , Plantones/enzimología , Plantones/genética , Plantones/fisiología , Semillas/efectos de los fármacos , Semillas/enzimología , Semillas/genética , Semillas/fisiología , Estrés Fisiológico , Factores de Tiempo , Técnicas del Sistema de Dos Híbridos , Agua/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...