Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(17)2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39273635

RESUMEN

The placenta is crucial to fetal development and performs vital functions such as nutrient exchange, waste removal and hormone regulation. Abnormal placental development can lead to conditions such as fetal growth restriction, pre-eclampsia and stillbirth, affecting both immediate and long-term fetal health. Placental development is a highly complex process involving interactions between maternal and fetal components, imprinted genes, signaling pathways, mitochondria, fetal sexomes and environmental factors such as diet, supplementation and exercise. Probiotics have been shown to make a significant contribution to prenatal health, placental health and fetal development, with associations with reduced risk of preterm birth and pre-eclampsia, as well as improvements in maternal health through effects on gut microbiota, lipid metabolism, vaginal infections, gestational diabetes, allergic diseases and inflammation. This review summarizes key studies on the influence of dietary supplementation on placental development, with a focus on the role of probiotics in prenatal health and fetal development.


Asunto(s)
Suplementos Dietéticos , Probióticos , Humanos , Embarazo , Probióticos/uso terapéutico , Femenino , Desarrollo Fetal , Placenta/metabolismo , Placentación , Microbioma Gastrointestinal , Animales
2.
Front Bioeng Biotechnol ; 12: 1408789, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38903185

RESUMEN

The stiffness of the extracellular matrix plays a crucial role in cell motility and spreading, influencing cell morphology through cytoskeleton organization and transmembrane proteins' expression. In this context, mechanical characterization of both cells and the extracellular matrix gains prominence for enhanced diagnostics and clinical decision-making. Here, we investigate the combined effect of mechanotransduction and ionizing radiations on altering cells' mechanical properties, analysing mammary cell lines (MCF10A and MDA-MB-231) after X-ray radiotherapy (2 and 10 Gy). We found that ionizing radiations sensitively affect adenocarcinoma cells cultured on substrates mimicking cancerous tissue stiffness (15 kPa), inducing an increased structuration of paxillin-rich focal adhesions and cytoskeleton: this process translates in the augmentation of tension at the actin filaments level, causing cellular stiffness and consequently affecting cytoplasmatic/nuclear morphologies. Deeper exploration of the intricate interplay between mechanical factors and radiation should provide novel strategies to orient clinical outcomes.

3.
Nanomaterials (Basel) ; 13(17)2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37686995

RESUMEN

Exposure to metal nanoparticles is potentially harmful, particularly when occurring during embryogenesis. In this study, we tested the effects of commercial AuNPs and AgNPs, widely used in many fields for their features, on the early development of Xenopus laevis, an anuran amphibian key model species in toxicity testing. Through the Frog Embryo Teratogenesis Assay-Xenopus test (FETAX), we ascertained that both nanoparticles did not influence the survival rate but induced morphological anomalies like modifications of head and branchial arch cartilages, depigmentation of the dorsal area, damage to the intestinal brush border, and heart rate alteration. The expression of genes involved in the early pathways of embryo development was also modified. This study suggests that both types of nanoparticles are toxic though nonlethal, thus indicating that their use requires attention and further study to better clarify their activity in animals and, more importantly, in humans.

4.
Nat Commun ; 14(1): 1432, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36918565

RESUMEN

Phosphatidylinositol-5-phosphate (PtdIns5P)-4-kinases (PIP4Ks) are stress-regulated phosphoinositide kinases able to phosphorylate PtdIns5P to PtdIns(4,5)P2. In cancer patients their expression is typically associated with bad prognosis. Among the three PIP4K isoforms expressed in mammalian cells, PIP4K2B is the one with more prominent nuclear localisation. Here, we unveil the role of PIP4K2B as a mechanoresponsive enzyme. PIP4K2B protein level strongly decreases in cells growing on soft substrates. Its direct silencing or pharmacological inhibition, mimicking cell response to softness, triggers a concomitant reduction of the epigenetic regulator UHRF1 and induces changes in nuclear polarity, nuclear envelope tension and chromatin compaction. This substantial rewiring of the nucleus mechanical state drives YAP cytoplasmic retention and impairment of its activity as transcriptional regulator, finally leading to defects in cell spreading and motility. Since YAP signalling is essential for initiation and growth of human malignancies, our data suggest that potential therapeutic approaches targeting PIP4K2B could be beneficial in the control of the altered mechanical properties of cancer cells.


Asunto(s)
Heterocromatina , Neoplasias , Humanos , 1-Fosfatidilinositol 4-Quinasa/metabolismo , Proteínas Potenciadoras de Unión a CCAAT/genética , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Núcleo Celular/metabolismo , Heterocromatina/genética , Heterocromatina/metabolismo , Neoplasias/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Isoformas de Proteínas/metabolismo , Transducción de Señal , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
5.
Front Bioeng Biotechnol ; 10: 969004, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36091449

RESUMEN

The microenvironment of breast cancer actively participates in tumorigenesis and cancer progression. The changes observed in the architecture of the extracellular matrix initiate an oncogene-mediated cell reprogramming, that leads to a massive triggering of YAP nuclear entry, and, therefore, to cancer cell proliferation, invasion and probably to increased radiation-resistance. However, it is not yet fully understood how radiotherapy regulates the expression and subcellular localization of YAP in breast cancer cells experiencing different microenvironmental stiffnesses. To elucidate the role of extracellular matrix stiffness and ionizing radiations on YAP regulation, we explored the behaviour of two different mammary cell lines, a normal epithelial cell line (MCF10A) and a highly aggressive and invasive adenocarcinoma cell line (MDA-MB-231) interacting with polyacrylamide substrates mimicking the mechanics of both normal and tumour tissues (∼1 and ∼13 kPa). We report that X-ray radiation affected in a significant way the levels of YAP expression, density, and localization in both cell lines. After 24 h, MCF10A and MDA-MB-231 increased the expression level of YAP in both nucleus and cytoplasm in a dose dependent manner and particularly on the stiffer substrates. After 72 h, MCF10A reduced mostly the YAP expression in the cytoplasm, whereas it remained high in the nucleus of cells on stiffer substrates. Tumour cells continued to exhibit higher levels of YAP expression, especially in the cytoplasmic compartment, as indicated by the reduction of nuclear/cytoplasmic ratio of total YAP. Then, we investigated the existence of a correlation between YAP localization and the expression of the nuclear envelope protein lamin A/C, considering its key role in modulating nuclear deformability and changes in YAP shuttling phenomena. As supposed, we found that the effects of radiation on YAP nucleus/cytoplasmic expression ratio, increasing in healthy cells and decreasing in tumour ones, were accompanied by lower and higher lamin A/C levels in MCF10A and MDA-MB-231 cells, respectively. These findings point to obtain a deeper knowledge of the role of the extracellular matrix and the effects of X-rays on YAP and lamin A/C expression that can be used in the design of doses and timing of radiation therapy.

6.
Front Bioeng Biotechnol ; 10: 797900, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35237573

RESUMEN

Malignant pleural mesothelioma is a relatively rare, but devastating tumor, because of the difficulties in providing early diagnosis and effective treatments with conventional chemo- and radiotherapies. Patients usually present pleural effusions that can be used for diagnostic purposes by cytological analysis. This effusion cytology may take weeks or months to establish and has a limited sensitivity (30%-60%). Then, it is becoming increasingly urgent to develop alternative investigative methods to support the diagnosis of mesothelioma at an early stage when this cancer can be treated successfully. To this purpose, mechanobiology provides novel perspectives into the study of tumor onset and progression and new diagnostic tools for the mechanical characterization of tumor tissues. Here, we report a mechanical and biophysical characterization of malignant pleural mesothelioma cells as additional support to the diagnosis of pleural effusions. In particular, we examined a normal mesothelial cell line (Met5A) and two epithelioid mesothelioma cell lines (REN and MPP89), investigating how malignant transformation can influence cellular function like proliferation, cell migration, and cell spreading area with respect to the normal ones. These alterations also correlated with variations in cytoskeletal mechanical properties that, in turn, were measured on substrates mimicking the stiffness of patho-physiological ECM.

7.
Int J Mol Sci ; 24(1)2022 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-36614044

RESUMEN

Nanoparticles (NPs) coated with hyaluronic acid (HA) seem to be increasingly promising for targeted therapy due to HA chemical versatility, which allows them to bind drugs of different natures, and their affinity with the transmembrane receptor CD-44, overexpressed in tumor cells. However, an essential aspect for clinical use of NPs is formulation stability over time. For these reasons, analytical techniques capable of characterizing their physico-chemical properties are needed. In this work, poly(lactide-co-glycolide) (PLGA) NPs with an average diameter of 100-150 nm, coated with a few 10 s of nm of HA, were synthesized. For stability characterization, two complementary investigative techniques were used: Dynamic Light Scattering (DLS) and Surface-Enhanced Raman Scattering (SERS) spectroscopy. The first technique provided information on size, polidispersity index, and zeta-potential, and the second provided a deeper insight on the NP surface chemicals, allowing distinguishing of HA-coated NPs from uncoated ones. Furthermore, in order to estimate formulation stability over time, NPs were measured and monitored for two weeks. SERS results showed a progressive decrease in the signal associated with HA, which, however, is not detectable by the DLS measurements.


Asunto(s)
Nanopartículas , Espectrometría Raman , Ácido Hialurónico/química , Nanopartículas/química , Portadores de Fármacos
8.
Chemosphere ; 289: 133233, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34896176

RESUMEN

The exposure of organisms to the nanoparticulate is potentially hazardous, particularly when it occurs during embryogenesis. The effects of commercial SiO2NPs in early development were studied, using Xenopus laevis as a model to investigate their possible future employment by means of the Frog Embryo Teratogenesis Assay-Xenopus test (FETAX). The SiO2NPs did not change the survival but produced several abnormalities in developing embryos, in particular, the dorsal pigmentation, the cartilages of the head and branchial arches were modified; the encephalon, spinal cord and nerves are anomalous and the intestinal brush border show signs of suffering; these embryos are also bradycardic. In addition, the expression of genes involved in the early pathways of embryo development was modified. Treated embryos showed an increase of reactive oxygen species. This study suggests that SiO2NPs are toxic but non-lethal and showed potential teratogenic effects in Xenopus. The latter may be due to their cellular accumulation and/or to the effect caused by the interaction of SiO2NPs with cytoplasmic and/or nuclear components. ROS production could contribute to the observed effects. In conclusion, the data indicates that the use of SiO2NPs requires close attention and further studies to better clarify their activity in animals, including humans.


Asunto(s)
Anomalías Inducidas por Medicamentos , Teratogénesis , Animales , Embrión no Mamífero , Desarrollo Embrionario , Humanos , Teratógenos/farmacología , Xenopus laevis
9.
Biomedicines ; 9(9)2021 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-34572287

RESUMEN

The cytoskeleton is involved in several biological processes, including adhesion, motility, and intracellular transport. Alterations in the cytoskeletal components (actin filaments, intermediate filaments, and microtubules) are strictly correlated to several diseases, such as cancer. Furthermore, alterations in the cytoskeletal structure can lead to anomalies in cells' properties and increase their invasiveness. This review aims to analyse several studies which have examined the alteration of the cell cytoskeleton induced by ionizing radiations. In particular, the radiation effects on the actin cytoskeleton, cell adhesion, and migration have been considered to gain a deeper knowledge of the biophysical properties of the cell. In fact, the results found in the analysed works can not only aid in developing new diagnostic tools but also improve the current cancer treatments.

10.
Front Bioeng Biotechnol ; 9: 660691, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34124020

RESUMEN

The intestinal microbiota is a real ecosystem composed of several bacterial species and a very huge amount of strains that through their metabolic activities play a crucial role in the development and performance of the immune system and other functions. Microbiota modulation by probiotics establishes a new era into the pharmaceutical and healthcare market. Probiotics play, in fact, an important role in helping and sustaining human health, but in order to produce benefits, their viability must be preserved throughout the production process up to consumption, and in addition, their bioactivity required to be safeguarded while passing through the gastrointestinal tract. In this frame, encouraging results come from encapsulation strategies that have proven to be very promising in protecting bacteria and their viability. However, specific effort has to be dedicated to the design optimization of the encapsulation process and, in particular, to the processing parameters that affect capsules microstructure. Herein, focusing on calcium alginate microspheres, after a preliminary selection of their processing conditions based on size distribution, we implemented a micro-rheological analysis, by using the multiple-particle tracking technique, to correlate the inner microstructure to the selected process conditions and to the viability of the Lactobacillus paracasei CBA L74. It was assessed that the explored levels of cross-linking, although changing the microorganism constriction, did not affect its viability. The obtained results confirm how this technology is a promising and a valid strategy to protect the microorganism viability and ensure its stability during the production process.

11.
Cancers (Basel) ; 12(5)2020 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-32384675

RESUMEN

The structural and mechanical properties of the microenvironmental context have a profound impact on cancer cell motility, tumor invasion, and metastasis formation. In fact, cells react to their mechanical environment modulating their adhesion, cytoskeleton organization, changes of shape, and, consequently, the dynamics of their motility. In order to elucidate the role of extracellular matrix stiffness as a driving force in cancer cell motility/invasion and the effects of ionizing radiations on these processes, we evaluated adhesion and migration as biophysical properties of two different mammary cell lines, over a range of pathophysiological stiffness (1-13 kPa) in a control condition and after the exposure to two different X-ray doses (2 and 10 Gy, photon beams). We concluded that the microenvironment mimicking the normal mechanics of healthy tissue has a radioprotective role on both cell lines, preventing cell motility and invasion. Supraphysiological extracellular matrix stiffness promoted tumor cell motility instead, but also had a normalizing effect on the response to radiation of tumor cells, lowering their migratory capability. This work lays the foundation for exploiting the extracellular matrix-mediated mechanism underlying the response of healthy and tumor cells to radiation treatments and opens new frontiers in the diagnostic and therapeutic use of radiotherapy.

13.
Nat Mater ; 19(7): 797-806, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32066931

RESUMEN

Defining the interplay between the genetic events and microenvironmental contexts necessary to initiate tumorigenesis in normal cells is a central endeavour in cancer biology. We found that receptor tyrosine kinase (RTK)-Ras oncogenes reprogram normal, freshly explanted primary mouse and human cells into tumour precursors, in a process requiring increased force transmission between oncogene-expressing cells and their surrounding extracellular matrix. Microenvironments approximating the normal softness of healthy tissues, or blunting cellular mechanotransduction, prevent oncogene-mediated cell reprogramming and tumour emergence. However, RTK-Ras oncogenes empower a disproportional cellular response to the mechanical properties of the cell's environment, such that when cells experience even subtle supra-physiological extracellular-matrix rigidity they are converted into tumour-initiating cells. These regulations rely on YAP/TAZ mechanotransduction, and YAP/TAZ target genes account for a large fraction of the transcriptional responses downstream of oncogenic signalling. This work lays the groundwork for exploiting oncogenic mechanosignalling as a vulnerability at the onset of tumorigenesis, including tumour prevention strategies.


Asunto(s)
Reprogramación Celular/fisiología , Matriz Extracelular/fisiología , Oncogenes/fisiología , Animales , Fenómenos Biomecánicos , Línea Celular Tumoral , Femenino , Regulación de la Expresión Génica , Humanos , Glándulas Mamarias Humanas/citología , Glándulas Mamarias Humanas/metabolismo , Ratones , Ratones Endogámicos , Ratones Noqueados , Microscopía/métodos , Oncogenes/genética , Páncreas/citología , Análisis de Secuencia de ARN
14.
Proc Natl Acad Sci U S A ; 116(44): 22004-22013, 2019 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-31570575

RESUMEN

The ability of cells to perceive the mechanical identity of extracellular matrix, generally known as mechanosensing, is generally depicted as a consequence of an intricate balance between pulling forces actuated by the actin fibers on the adhesion plaques and the mechanical reaction of the supporting material. However, whether the cell is sensitive to the stiffness or to the energy required to deform the material remains unclear. To address this important issue, here the cytoskeleton mechanics of BALB/3T3 and MC3T3 cells seeded on linearly elastic substrates under different levels of deformation were studied. In particular, the effect of prestrain on cell mechanics was evaluated by seeding cells both on substrates with no prestrain and on substrates with different levels of prestrain. Results indicated that cells recognize the existence of prestrain, exhibiting a stiffer cytoskeleton on stretched material compared to cells seeded on unstretched substrate. Cytoskeleton mechanics of cells seeded on stretched material were, in addition, comparable to those measured after the stretching of the substrate and cells together to the same level of deformation. This observation clearly suggests that cell mechanosensing is not mediated only by the stiffness of the substrate, as widely assumed in the literature, but also by the deformation energy associated with the substrate. Indeed, the clutch model, based on the exclusive dependence of cell mechanics upon substrate stiffness, fails to describe our experimental results. By modifying the clutch model equations to incorporate the dependence on the strain energy, we were able to correctly interpret the experimental evidence.


Asunto(s)
Mecanotransducción Celular/fisiología , Animales , Línea Celular , Matriz Extracelular/metabolismo , Matriz Extracelular/fisiología , Adhesiones Focales/metabolismo , Adhesiones Focales/fisiología , Ratones , Ratones Endogámicos BALB C , Células 3T3 NIH
15.
Carbohydr Polym ; 220: 185-190, 2019 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-31196539

RESUMEN

Posterior eye segment diseases are treated through monthly intravitreal injections, that evoke serious side effects. A promising approach to reduce injection frequency consists in producing biodegradable microspheres (MPs) releasing the protein in the vitreous body for long times. Moreover, a rational design of these MPs requires a discouraged diffusion/sedimentation within the intravitreal space, which are detrimental for the vision and the control over drug release kinetics. In this work, poly(lactic-co-glycolic acid) (PLGA)-based MPs encapsulating bovine serum albumin (BSA) were coated with hyaluronic acid (HA) at two molecular weights and tested for their release, diffusion and degradation features in simulated vitreous body (SVB). Results indicate that HA corona prolongs MP degradation time and BSA release. Furthermore, HA coating increased the affinity between MPs and SVB, thereby repressing device transport compared to control PLGA MPs. Results hold promise for the possible application of HA-decorated MPs for intravitreal injection of protein drugs.


Asunto(s)
Portadores de Fármacos/uso terapéutico , Liberación de Fármacos , Inyecciones Intravítreas/métodos , Microesferas , Cuerpo Vítreo/efectos de los fármacos , Difusión , Sistemas de Liberación de Medicamentos/métodos , Oftalmopatías/tratamiento farmacológico , Humanos , Ácido Hialurónico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Albúmina Sérica Bovina/química
16.
J Cell Physiol ; 234(4): 4959-4969, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30334571

RESUMEN

Combination chemotherapy by means of two or more drugs is prone to suppressing or discouraging the inception of multidrug resistance, exploiting the fact that diverse drugs act in different points of the cellular cycle of amplifying tumor cells. For example, the combination of gemcitabine (GMC) with quercetin (QCT) showed a synergistic effect in inhibiting the migration of pancreatic cancer cells. Consequently, herein GMC and QCT have been loaded within biodegradable nanoparticles (NPs) based on poly(lactic-co-glycolic acid), externally decorated with hyaluronic acid (HA; viz., PPHA NPs), which plays a major role in drug targeting to tumors due to its ability to specifically interact with CD44 receptor, that is overexpressed in many tumors. The produced HA-decorated NPs loaded with GMC and QCT showed an improved cytotoxicity and cellular uptake toward two cell lines of pancreatic ductal adenocarcinoma, namely Mia-PaCa-2 and PANC-1, compared with both the bare drugs and the drugs loaded in NPs which do not expose HA on the surface. HA-decorated NPs were also able to improve the anti-inflammatory properties of QCT, therefore leading to a decrease of interleukin cellular levels in both cell lines, preliminarily stimulated with lipopolysaccharides. This result is of special interest also considering the crucial role of interleukins in progression, metastatic processes, and drug resistance of human pancreas cancer cells.


Asunto(s)
Antineoplásicos/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Carcinoma Ductal Pancreático/tratamiento farmacológico , Desoxicitidina/análogos & derivados , Portadores de Fármacos/farmacología , Neoplasias Pancreáticas/tratamiento farmacológico , Quercetina/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Desoxicitidina/farmacología , Sinergismo Farmacológico , Humanos , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Nanopartículas/administración & dosificación , Gemcitabina
17.
Acta Biomater ; 57: 334-341, 2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28483699

RESUMEN

The mechanical cross-talk between cells and the extra-cellular matrix (ECM) regulates the properties, functions and healthiness of the tissues. When this is disturbed it changes the mechanical state of the tissue components, singularly or together, and cancer, along with other diseases, may start and progress. However, the bi-univocal mechanical interplay between cells and the ECM is still not properly understood. In this study we show how a microrheology technique gives us the opportunity to evaluate the mechanics of cells and the ECM at the same time. The mechanical phenotyping was performed on the surgically removed tissues of 10 patients affected by adenocarcinoma of the lung. A correlation between the mechanics and the grade and stage of the tumor was reported and compared to the mechanical characteristics of the healthy tissue. Our findings suggest a sort of asymmetric modification of the mechanical properties of the cells and the extra-cellular matrix in the tumor, being the more compliant cell even though it resides in a stiffer matrix. Overall, the simultaneous mechanical characterization of the tissues constituents (cells and ECM) provided new support for diagnosis and offered alternative points of analysis for cancer mechanobiology. STATEMENT OF SIGNIFICANCE: When the integrity of the mechanical cross-talk between cells and the extra-cellular matrix is disturbed cancer, along with other diseases, may initiate and progress. Here, we show how a new technique gives the opportunity to evaluate the mechanics of cells and the ECM at the same time. It was applied on surgically removed tissues of 10 patients affected by adenocarcinoma of the lung and a correlation between the mechanics and the grade and stage of the tumor was reported and compared to the mechanical characteristics of the healthy tissue.


Asunto(s)
Adenocarcinoma , Matriz Extracelular , Neoplasias Pulmonares , Adenocarcinoma/química , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Adenocarcinoma del Pulmón , Línea Celular Tumoral , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Humanos , Neoplasias Pulmonares/química , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Clasificación del Tumor , Estadificación de Neoplasias
18.
Cytoskeleton (Hoboken) ; 74(1): 40-52, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27533498

RESUMEN

Alterations in the cytoskeleton structure are frequently found in several diseases and particularly in cancer cells. It is also through the alterations of the cytoskeleton structure that cancer cells acquire most of their common features such as uncontrolled cell proliferation, cell death evasion, and the gaining of migratory and invasive characteristics. Although radiation therapies currently represent one of the most effective treatments for patients, the effects of X-irradiation on the cytoskeleton architecture are still poorly understood. In this case we investigated the effects, over time of two different doses of X-ray irradiation, on cell cytoskeletons of BALB/c3T3 and Sv40-transformed BALB/c 3T3 cells (SVT2). Biophysical parameters - focal adhesion size, actin bundles organization, and cell mechanical properties - were measured before and after irradiations (1 and 2 Gy) at 24 and 72 h, comparing the cytoskeleton properties of normal and transformed cells. The differences, before and after X-irradiation, were revealed in terms of cell morphology and deformability. Finally, such parameters were correlated to the alterations of cytoskeleton dynamics by evaluating cell adhesion at the level of focal adhesion and cytoskeleton mechanics. X-irradiation modifies the structure and the activity of cell cytoskeleton in a dose-dependent manner. For transformed cells, radiation sensitively increased cell adhesion, as indicated by paxillin-rich focal adhesion, flat morphology, a well-organized actin cytoskeleton, and intracellular mechanics. On the other hand, for normal fibroblasts IR had negligible effects on cytoskeletal and adhesive protein organization. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Biofisica/métodos , Citoesqueleto/metabolismo , Reología/métodos , Rayos X/efectos adversos , Adhesiones Focales , Humanos
19.
Acta Biomater ; 47: 1-13, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27721010

RESUMEN

We fabricated three-dimensional microtissues with the aim to replicate in vitro the composition and the functionalities of the tumor microenvironment. By arranging either normal fibroblasts (NF) or cancer-activated fibroblasts (CAF) in two different three dimensional (3D) configurations, two kinds of micromodules were produced: spheroids and microtissues. Spheroids were obtained by means of the traditional cell aggregation technique resulting in a 3D model characterized by high cell density and low amount of extracellular proteins. The microtissues were obtained by culturing cells into porous gelatin microscaffolds. In this latter configuration, cells assembled an intricate network of collagen, fibronectin and hyaluronic acid. We investigated the biophysical properties of both 3D models in terms of cell growth, metabolic activity, texture and composition of the extracellular matrix (via histological analysis and multiphoton imaging) and cell mechanical properties (via Particle Tracking Microrheology). In the spheroid models such biophysical properties remained unchanged regardless to the cell type used. In contrast, normal-microtissues and cancer-activated-microtissues displayed marked differences. CAF-microtissues possessed higher proliferation rate, superior contraction capability, different micro-rheological properties and an extracellular matrix richer in collagen fibronectin and hyaluronic acid. At last, multiphoton investigation revealed differences in the collagen network architecture. Taken together, these results suggested that despite to cell spheroids, microtissues better recapitulate the important differences existing in vivo between normal and cancer-activated stroma representing a more suitable system to mimic in vitro the stromal element of the tumor tissues. STATEMENT OF SIGNIFICANCE: This work concerns the engineering of tumor tissue in vitro. Tumor models serve as biological equivalent to study pathologic progression and to screen or validate the drugs efficacy. Tumor tissue is composed by malignant cells surviving in a microenvironment, or stroma. Stroma plays a pivotal role in cancer progression. Current in vitro models, i.e. spheroids, can't replicate the phenomena related to the tumor stroma remodeling. For this reason, to better replicate the tumor physiology in vitro that include functional and morphological changes, a novel 3D cancer model is proposed.


Asunto(s)
Microambiente Celular , Neoplasias/patología , Recuento de Células , Núcleo Celular/metabolismo , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Fibroblastos/patología , Fibronectinas/metabolismo , Técnica del Anticuerpo Fluorescente , Humanos , Ácido Hialurónico/metabolismo , Consumo de Oxígeno , Reología , Esferoides Celulares/patología , Células del Estroma/patología , Factores de Tiempo
20.
ACS Biomater Sci Eng ; 3(8): 1586-1594, 2017 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-33429644

RESUMEN

It is possible to create sophisticated and target-specific devices for nanomedicine thanks to technological advances in the engineering of nanomaterials. When on target, these nanocarriers often have to be internalized by cells in order to accomplish their diagnostic or therapeutic function. Therefore, the control of such uptake mechanism by active targeting strategy has today become the new challenge in nanoparticle designing. It is also well-known that cells are able to sense and respond to the local physical environment and that the substrate stiffness, and not only the nanoparticle design, influences the cellular internalization mechanisms. In this frame, our work reports on the cyclic relationship among substrate stiffness, cell cytoskeleton assembly and internalization mechanism. Nanoparticles uptake has been investigated in terms of the mechanics of cell environment, the resulting cytoskeleton activity and the opportunity of activate molecular specific molecular pathways during the internalization process. To this aim, the surface of 100 nm polystyrene nanoparticles was decorated with a tripeptide (RGD and a scrambled version as a control), which was able to activate an internalization pathway directly correlated to the dynamics of the cell cytoskeleton, in turn, directly correlated to the elastic modulus of the substrates. We found that the substrate stiffness modulates the uptake of nanoparticles by regulating structural parameters of bEnd.3 cells as spreading, volume, focal adhesion, and mechanics. In fact, the nanoparticles were internalized in larger amounts both when decorated with RGD, which activated an internalization pathway directly correlated to the cell cytoskeleton, and when cells resided on stiffer material that, in turn, promoted the formation of a more structured cytoskeleton. This evidence indicates the directive role of the mechanical environment on cellular uptake of nanoparticles, contributing new insights to the rational design and development of novel nanocarrier systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...