Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Diabetes ; 70(10): 2204-2212, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34257070

RESUMEN

Prohibitin-1 (PHB) is a multifunctional protein previously reported to be important for adipocyte function. PHB is expressed on the surface of adipose cells, where it interacts with a long-chain fatty acid (LCFA) transporter. Here, we show that mice lacking PHB in adipocytes (PHB adipocyte [Ad]-knockout [KO]) have a defect in fat tissue accumulation despite having larger lipid droplets in adipocytes due to reduced lipolysis. Although PHB Ad-KO mice do not display glucose intolerance, they are insulin resistant. We show that PHB Ad-KO mice are lipid intolerant due to a decreased capacity of adipocytes for LCFA uptake. Instead, PHB Ad-KO mice have increased expression of GLUT1 in various tissues and use glucose as a preferred energy source. We demonstrate that PHB Ad-KO mice have defective brown adipose tissue, are intolerant to cold, and display reduced basal energy expenditure. Systemic repercussions of PHB inactivation in adipocytes were observed in both males and females. Consistent with lower cellular mitochondrial content and reduced uncoupling protein 1 protein expression, brown adipocytes lacking PHB display decreased proton leak and switch from aerobic metabolism to glycolysis. Treatment of differentiating brown adipocytes with small molecules targeting PHB suppressed mitochondrial respiration and uncoupling. Our results demonstrate that PHB in adipocytes is essential for normal fatty acid uptake, oxidative metabolism, and adaptive thermogenesis. We conclude that PHB inhibition could be investigated as an approach to altering energy substrate utilization.


Asunto(s)
Adipocitos/metabolismo , Metabolismo de los Lípidos/genética , Prohibitinas/genética , Termogénesis/genética , Tejido Adiposo Pardo/metabolismo , Animales , Células Cultivadas , Metabolismo Energético/genética , Silenciador del Gen , Glucosa/metabolismo , Lipólisis/genética , Ratones , Ratones Noqueados , Mitocondrias/fisiología , Especificidad de Órganos/genética , Prohibitinas/metabolismo
2.
JCI Insight ; 6(17)2021 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-34314388

RESUMEN

The mechanism controlling long-chain fatty acid (LCFA) mobilization from adipose tissue is not well understood. Here, we investigated how the LCFA transporter CD36 regulates this process. By using tissue-specific KO mouse models, we showed that CD36 in adipocytes and endothelial cells mediated both LCFA deposition into and release from adipose tissue. We demonstrated the role of adipocytic and endothelial CD36 in promoting tumor growth and chemoresistance conferred by adipose tissue-derived LCFAs. We showed that dynamic cysteine S-acylation of CD36 in adipocytes, endothelial cells, and cancer cells mediated intercellular LCFA transport. We demonstrated that lipolysis induction in adipocytes triggered CD36 deacylation and deglycosylation, as well as its dissociation from interacting proteins, prohibitin-1 (PHB) and annexin 2 (ANX2). Our data indicate that lipolysis triggers caveolar endocytosis and translocation of CD36 from the cell membrane to lipid droplets. This study suggests a mechanism for both outside-in and inside-out cellular LCFA transport regulated by CD36 S-acylation and its interactions with PHB and ANX2.


Asunto(s)
Adipocitos/metabolismo , Antígenos CD36/genética , ADN/genética , Ácidos Grasos/metabolismo , Regulación de la Expresión Génica , Enfermedades Metabólicas/genética , Procesamiento Proteico-Postraduccional , Adipocitos/patología , Tejido Adiposo/metabolismo , Animales , Animales Modificados Genéticamente , Transporte Biológico , Antígenos CD36/biosíntesis , Membrana Celular/metabolismo , Células Cultivadas , ADN/metabolismo , Modelos Animales de Enfermedad , Lipólisis , Enfermedades Metabólicas/metabolismo , Enfermedades Metabólicas/patología , Ratones , Ratones Endogámicos C57BL
3.
Nat Metab ; 2(12): 1482-1497, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33324010

RESUMEN

White and beige adipocytes in subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) are maintained by proliferation and differentiation of adipose progenitor cells (APCs). Here we use mice with tissue-specific telomerase reverse transcriptase (TERT) gene knockout (KO), which undergo premature telomere shortening and proliferative senescence in APCs, to investigate the effect of over-nutrition on APC exhaustion and metabolic dysfunction. We find that TERT KO in the Pdgfra+ cell lineage results in adipocyte hypertrophy, inflammation and fibrosis in SAT, while TERT KO in the Pdgfrb+ lineage leads to adipocyte hypertrophy in both SAT and VAT. Systemic insulin resistance is observed in both KO models and is aggravated by a high-fat diet. Analysis of human biopsies demonstrates that telomere shortening in SAT is associated with metabolic disease progression after bariatric surgery. Our data indicate that over-nutrition can promote APC senescence and provide a mechanistic link between ageing, obesity and diabetes.


Asunto(s)
Adipocitos/patología , Envejecimiento/patología , Enfermedades Metabólicas/patología , Células Madre/patología , Homeostasis del Telómero , Adipocitos Beige/metabolismo , Adipocitos Blancos/metabolismo , Animales , Diferenciación Celular , Linaje de la Célula/genética , Proliferación Celular , Dieta Alta en Grasa , Femenino , Humanos , Resistencia a la Insulina/genética , Grasa Intraabdominal , Masculino , Enfermedades Metabólicas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Grasa Subcutánea/metabolismo , Grasa Subcutánea/patología , Telomerasa/genética , Telomerasa/metabolismo
4.
Cells ; 9(12)2020 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-33317052

RESUMEN

Proper processing of collagens COL1 and COL6 is required for normal function of adipose tissue and skeletal muscle. Proteoglycan decorin (DCN) regulates collagen fiber formation. The amino-terminus of DCN is modified with an O-linked glycosaminoglycan (GAG), the function of which has remained unclear. Previously, non-glycanated DCN (ngDCN) was identified as a marker of adipose stromal cells. Here, we identify MMP14 as the metalloprotease that cleaves DCN to generate ngDCN. We demonstrate that mice ubiquitously lacking DCN GAG (ngDCN mice) have reduced matrix rigidity, enlarged adipocytes, fragile skin, as well as skeletal muscle hypotrophy, fibrosis, and dysfunction. Our results indicate that DCN deglycanation results in reduced intracellular DCN-collagen binding and increased production of truncated COL6 chains, leading to aberrant procollagen processing and extracellular localization. This study reveals that the GAG of DCN functions to regulate collagen assembly in adipose tissue and skeletal muscle and uncovers a new mechanism of matrix dysfunction in obesity and aging.


Asunto(s)
Colágeno Tipo I/metabolismo , Colágeno Tipo VI/metabolismo , Decorina/metabolismo , Metaloproteinasa 14 de la Matriz/metabolismo , Tejido Adiposo/citología , Tejido Adiposo/metabolismo , Animales , Células Cultivadas , Colágeno Tipo I/química , Cadena alfa 1 del Colágeno Tipo I , Colágeno Tipo VI/química , Decorina/genética , Matriz Extracelular/metabolismo , Femenino , Glicosaminoglicanos/química , Glicosaminoglicanos/genética , Glicosaminoglicanos/metabolismo , Masculino , Ratones , Músculo Esquelético/metabolismo , Piel/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA