Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Pharm Res ; 41(4): 819-831, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38443630

RESUMEN

PURPOSE: Hollow-type microneedles (hMNs) are a promising device for the effective administration of drugs into intradermal sites. Complete insertion of the needle into the skin and administration of the drug solution without leakage must be achieved to obtain bioavailability or a constant effect. In the present study, several types of hMN with or without a rounded blunt tip micropillar, which suppresses skin deformation, around a hollow needle, and the effect on successful needle insertion and administration of a drug solution was investigated. Six different types of hMNs with needle lengths of 1000, 1300, and 1500 µm with or without a micropillar were used. METHODS: Needle insertion and the disposition of a drug in rat skin were investigated. In addition, the displacement-force profile during application of hMNs was also investigated using a texture analyzer with an artificial membrane to examine needle factors affecting successful insertion and administration of a drug solution by comparing with in vivo results. RESULTS: According to the results with the drug distribution of iodine, hMN1300 with a micropillar was able to successfully inject drug solution into an intradermal site with a high success rate. In addition, the results of displacement-force profiles with an artificial membrane showed that a micropillar can be effective for depth control of the injected solution as well as the prevention of contact between the hMN pedestal and the deformed membrane. CONCLUSION: In the present study, hMN1300S showed effective solution delivery into an intradermal site. In particular, a micropillar can be effective for depth control of the injected solution as well as preventing contact between the hMN pedestal and the deformed membrane. The obtained results will help in the design and development of hMNs that ensure successful injection of an administered drug.


Asunto(s)
Sistemas de Liberación de Medicamentos , Piel , Ratas , Animales , Microinyecciones , Inyecciones Intradérmicas , Sistemas de Liberación de Medicamentos/métodos , Agujas , Membranas Artificiales , Administración Cutánea
2.
Pharm Res ; 40(8): 1953-1963, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37165148

RESUMEN

PURPOSE: Hollow microneedles (hMNs) have been gaining attention as a tool to enable the intradermal (i.d.) administration of pharmaceutical products. However, few reports have examined the effect of administration volume on distribution in the skin and pharmacokinetics parameters after i.d. injection. In the present study, a model middle molecular weight compound, fluorescein isothiocyanate dextran (M.W. 4,000, FD-4), was selected, and blood concentration-time profiles after i.d. and subcutaneous (s.c.) injections with different administration volumes were compared. METHODS: FD-4 solution was injected i.d. using a hMN or injected s.c. with a 27 G needle. Pharmacokinetics and dermatokinetics of FD-4 were analyzed using a compartment model. The skin distribution of iodine, as an X ray tracer, was used to evaluate drug disposition. RESULTS: With the administered drug assumed to be absorbed from the broad injection site into blood vessels in the upper and lower dermis by rapid (krapid) and slow (kslow) first-order absorption rate constants, respectively, better agreement of observed and theoretical values was obtained. Furthermore, the fraction, F, of the administered dose absorbed with krapid decreased with the increase in injection volume after i.d. injection, although the pharmacokinetics parameters were almost the same regardless of administration volume after s.c. injection. CONCLUSION: The drug distribution in the skin may be related to the obtained pharmacokinetics parameters suggested that the number of needles in the MN system and the total administration volume should be considered in designing hMN systems. The present results provide useful information that may support effective drug delivery with hMNs.


Asunto(s)
Agujas , Piel , Inyecciones Intradérmicas , Piel/metabolismo , Absorción Cutánea , Sistemas de Liberación de Medicamentos/métodos , Preparaciones Farmacéuticas/metabolismo , Administración Cutánea , Microinyecciones/métodos
3.
Chem Pharm Bull (Tokyo) ; 69(7): 639-645, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34193712

RESUMEN

The purpose of the present study was to evaluate whether iontophoresis (IP) accelerates the intradermal migration rate of medium molecular weight drugs. Sodium polystyrene sulfonate (PSA) and fluorescein isothiocyanate-dextran (FD) were used as model medium molecular weight acidic and non-electrolyte drugs, respectively. Low molecular weight acid and non-electrolyte drugs were also used for comparison. Drug-loaded excised split-layered skin (SL skin) was used in the experiment. SL skin was prepared using (i) whole skin was split once, (ii) the drug solution was applied on the lower skin, and (iii) the upper skin was layered onto the lower skin containing the drug solution as in the original skin. The effect of constant-current cathodal or anodal IP was applied to the SL skin, and the time course of the cumulative amount of drug migration from the SL skin through the dermis to the receiver was followed. In cases without IP and with anodal IP, the intradermal migration rates of medium molecular weight drugs were much lower than those of small molecules. The driving force for drug migration was thought to be simple diffusion through the skin layer. In contrast, cathodal IP significantly increased the intradermal migration rate of PSA not but of FD or low molecular weight drugs. This IP-facilitated migration of PSA was probably due to electrorepulsion. These results suggest that IP can be used to increase the intradermal migration of medium molecular weight charged drugs.


Asunto(s)
Dextranos/metabolismo , Fluoresceína-5-Isotiocianato/análogos & derivados , Iontoforesis/métodos , Poliestirenos/metabolismo , Animales , Cromatografía Líquida de Alta Presión , Dextranos/análisis , Fluoresceína-5-Isotiocianato/análisis , Fluoresceína-5-Isotiocianato/metabolismo , Fluorometría , Peso Molecular , Poliestirenos/análisis , Absorción Cutánea , Porcinos
4.
Pharmaceutics ; 10(4)2018 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-30241371

RESUMEN

N-Palmitoyl-Glycine-Histidine (Pal-GH) is a novel low molecular weight gelator. In our previous report, ivermectin, a lipophilic drug, was effectively delivered to skin tissue after topical application with Pal-GH as a spray gel formulation, and a much higher skin concentration was confirmed than with the administration of a conventional oral formulation. The objective of this study was to increase the skin permeation of metronidazole (MTZ), a hydrophilic drug, after the topical application of Pal-GH gel. An evaluation of the combined effect of chemical penetration enhancers (CPEs), such as isopropyl myristate (IPM), propylene glycol (PG), ethanol, diethylene glycol monoethyl ether, and dimethyl sulfoxide (DMSO), on skin permeation was also conducted. We found that a 5% Pal-GH gel containing 1% MTZ (F5MTZ) exhibited a 2.7-fold higher MTZ permeation through excised hairless rat skin than its solution. Furthermore, F5PG-MTZ and F5IPM-MTZ further increased the skin permeation of MTZ when compared to F5MTZ. Interestingly, F5PG-MTZ enhanced the skin penetration of MTZ, although no enhancement effect was observed for an MTZ solution containing PG. Thus, a Pal-GH formulation containing PG and IPM may enhance the skin permeation of MTZ.

5.
Chem Pharm Bull (Tokyo) ; 66(3): 327-333, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29491265

RESUMEN

Palmitoyl-glycine-histidine (Pal-GH) is a new low molecular weight gelling agent. It exhibits thixotropic behavior, low viscosity, and high dissolving properties for a wide range of hydrophilic to lipophilic drugs. Orally administered ivermectin (IVM) is used to treat scabies. However, this treatment is associated with well-known side effects, thus a study is awaited to search for alternative routes of administration. Although a topical formulation of IVM could be a candidate, it requires whole body application except the head and face for several hours on a daily basis. Therefore, in this study, we prepared a gel spray formulation containing IVM as an approach for application to large skin areas with a single spray application without further contact with the applied formulation. Pal-GH gel spray formulations were prepared from its aqueous solution by a heating and cooling method. Rheological behavior and physical appearance (spraying, spreading ability, volume of spraying, and homogeneity) of the prepared formulations were evaluated. Pal-GH gel with propylene glycol demonstrated impressive rheological properties (typical thixotropic behavior) with high hysteresis area among all the tested Pal-GH gels and spreading ability. The obtained IVM concentration in the skin after topical application of 0.1% IVM-containing Pal-GH formulation onto hairless rats was much higher than the reported therapeutic concentration obtained from oral administration in humans. These results suggested that topical application of IVM using a Pal-GH gel spray formulation could be an alternative to the conventional oral forms for the scabies treatment.


Asunto(s)
Geles/química , Ivermectina/química , Administración Tópica , Animales , Cromatografía Líquida de Alta Presión , Composición de Medicamentos , Diseño de Fármacos , Ivermectina/farmacología , Ivermectina/uso terapéutico , Peso Molecular , Ratas , Ratas sin Pelo , Reología , Escabiosis/tratamiento farmacológico , Piel/química , Piel/efectos de los fármacos , Piel/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...