Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 26(13): 9963-9974, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38477114

RESUMEN

Exploration of the photolytic dynamics of sulfurous compounds is essential, eventually contributing not only to our comprehension of their fundamental organic chemistry but also shedding light on astrophysical implications. This study aims to investigate two astrochemically relevant sulfur-containing molecules, namely, thiourea (TU) and its N-methylated counterpart, N-methyl thiourea (NMTU), in cryogenic matrices. These molecules were deposited both in solid Ar and in a quantum host, specifically in solid para-H2 matrices, with the latter exhibiting unique properties. The deposited matrices were exposed to a series of UV laser irradiation at various wavelengths to investigate the decomposition paths of TU and NMTU. As a result of the UV photolysis, a plethora of degradation products could be observed in every case. Based on the presence of these product molecules, some considerations can be made regarding the decomposition mechanism of the parent molecules. The use of different matrices allowed for assessing their influence on the decay mechanism, while applying tunable laser light provided insights into the wavelength dependency of the processes.

2.
J Chem Phys ; 160(2)2024 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-38214387

RESUMEN

There is an ongoing debate on the apparent depletion of sulfur in the interstellar medium (ISM) compared to its universal abundance; therefore, the investigation of sulfurous compounds at low temperatures is of utmost importance. This work aims to study thioacetamide, H3C-C(=S)-NH2, in low-temperature inert Ar and para-H2 matrices by IR spectroscopy. The samples have been exposed to various sources of irradiation, such as Lyman-α or laser UV photons as well as energetic electrons. Using different host materials enabled assessing the matrix's impact on precursor decomposition. The response of the molecule to different types of irradiation has also been evaluated. The existence of three main decomposition channels were deduced: formation of (i) CH3, CH4, and HNCS; (ii) H2S and H2C=C=NH; and (iii) NH3 and H2C=C=S. The H3C-CN and H3C-NC isomers of H2C=C=NH could also be identified. Secondary products such as HNC and HCN were also detected in the quantum solid para-H2 in contrast to the more rigid Ar matrix. The listed decomposition products have been observed in the ISM, with the exception of H2C=C=NH and H3C-NC. The results point to the potential sensitivity of the precursor molecule to energetic radiation in space environments. Finally, the findings of this work will serve as a foundation for future irradiation experiments using the astrochemically more relevant pure thioacetamide ice.

3.
J Chem Phys ; 160(2)2024 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-38205854

RESUMEN

The α-hydroxyethyl radical (CH3·CHOH, 2A) is a key intermediate in ethanol biochemistry, combustion, atmospheric chemistry, radiation chemistry, and astrochemistry. Experimental data on the vibrational spectrum of this radical are crucially important for reliable detection and understanding of the chemical dynamics of this species. This study represents the first detailed experimental report on the infrared absorption bands of the α-hydroxyethyl radical complemented by ab initio computations. The radical was generated in solid para-H2 and Xe matrices via the reactions of hydrogen atoms with matrix-isolated ethanol molecules and radiolysis of isolated ethanol molecules with x rays. The absorption bands with maxima at 3654.6, 3052.1, 1425.7, 1247.9, 1195.6 (1177.4), and 1048.4 cm-1, observed in para-H2 matrices appearing upon the H· atom reaction, were attributed to the OHstr, α-CHstr, CCstr, COstr + CCObend, COstr, and CCstr + CCObend vibrational modes of the CH3·CHOH radical, respectively. The absorption bands with the positions slightly red-shifted from those observed in para-H2 were detected in both the irradiated and post-irradiation annealed Xe matrices containing C2H5OH. The results of the experiments with the isotopically substituted ethanol molecules (CH3CD2OH and CD3CD2OH) and the quantum-chemical computations at the UCCSD(T)/L2a_3 level support the assignment. The photolysis with ultraviolet light (240-300 nm) results in the decay of the α-hydroxyethyl radical, yielding acetaldehyde and its isomer, vinyl alcohol. A comparison of the experimental and theoretical results suggests that the radical adopts the thermodynamically more stable anti-conformation in both matrices.

4.
J Phys Chem Lett ; 13(11): 2600-2606, 2022 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-35290734

RESUMEN

An investigation of the fundamental processes leading to the incorporation of 18O isotopes in carbon dioxide and in iron oxides is critical to understanding the atmospheric evolution and geochemistry of Mars. Whereas signatures of 18O have been observed by the Phoenix Lander and the sample analysis at Mars for carbon dioxide, the underlying isotopic exchange pathways with minerals of the crust of Mars are still elusive. Here, we reveal that reactions of gaseous 18O-carbon dioxide over goethite (FeO(OH)) and hematite (Fe2O3) lead to an 18O transfer from the atmosphere that enriches the 18O content of the iron oxides in the absence of water and light. This proof-of-concept study shows that isotopic enrichment processes on Mars not only are limited to the atmosphere but also proceed via chemical interaction with dry iron oxides. These processes are decisive to comprehending the 18O cycle between the atmosphere and the surface on the planetary scale.


Asunto(s)
Dióxido de Carbono , Compuestos Férricos , Dióxido de Carbono/química , Hierro , Isótopos de Oxígeno
5.
Photochem Photobiol Sci ; 21(5): 835-847, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35076900

RESUMEN

A new methoxy-substituted ortho-hydroxyaryl Schiff base, 4-(3-methoxy-2-hydroxybenzylidene-amino) phenol was synthesized from 4-aminophenol and 2-hydroxy-3-methoxybenzaldehyde in methanol solution and characterized by 1H-NMR, 13C-NMR and infrared spectroscopies and elemental analysis. The compound was isolated in a cryogenic (10 K) argon matrix, and the analysis of the infrared spectrum of the matrix-isolated compound revealed that it corresponds to the E-enol-imine isomeric form, with 3 different conformers being present in the matrix. These conformers share as common structural features the conformation of the free hydroxyl group (trans relatively to the para-substituent of the ring) and the presence of an OH…N intramolecular H-bond involving the methoxy-substituted phenol ring and the azomethine bridge, while they differ in the orientation of the methoxy-substituent group. The structures and relative energies of the conformers of the molecule, and relevant barriers for their interconversion were obtained through quantum chemical calculations, which were also used to calculate the infrared spectra of the different forms. Calculations were also carried out for the higher-energy Z-enol-imine and keto-amine forms of the compound. Upon UV (230 nm) irradiation, -OCH3 rotamerization was observed, leading to conversion of the lowest energy conformer, where the methoxy group is aligned with the plane of the ring, into the other two conformers initially present in the matrix, in which the OCH3 group is out-of-the-plane of the ring. As for other phenolic compounds previously studied, spontaneous quantum mechanical tunneling conversion of the cis-OH conformers present in the gas-phase into the three observed conformers was found to take place during matrix deposition.


Asunto(s)
Fenoles , Bases de Schiff , Conformación Molecular , Bases de Schiff/química , Espectrofotometría Infrarroja
6.
J Phys Chem Lett ; 12(28): 6744-6751, 2021 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-34264091

RESUMEN

The reaction of H atoms with glycine was investigated at 3.1 K in para-H2, a quantum-solid host. The reaction was followed by IR spectroscopy, with the spectral analysis aided by quantum chemical computations. Comparison of the experimental IR spectrum with computed anharmonic frequencies and intensities proved that, regardless of the reactant glycine conformation, Cα-glycyl radical is formed in an H-atom-abstraction process with great selectivity. The product of the second H-atom abstraction, iminoacetic acid, was also observed in a smaller amount. The Cα-glycyl radical is sensitive to UV light and decomposes to iminoacetic acid and H atom upon 280 nm radiation. Since the reactive radical center is located on the Cα-atom, it is suggested that natural α-amino acids can be formed from glycine via the Cα-glycyl radical by non-energetic mechanisms in the solid phase of the interstellar medium.


Asunto(s)
Glicina/química , Temperatura , Hidrógeno/química , Modelos Moleculares , Conformación Molecular , Procesos Fotoquímicos , Teoría Cuántica
7.
Molecules ; 26(9)2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-34068634

RESUMEN

A new Schiff base compound, 3-(5-bromo-2-hydroxybenzylideneamino)phenol (abbreviated as BHAP) was synthesized and characterized by 1H- and 13C- nuclear magnetic resonance and infrared spectroscopies. DFT/B3LYP/6-311++G(d,p) calculations were undertaken in order to explore the conformational space of both the E- and Z- geometrical isomers of the enol-imine and keto-amine tautomers of the compound. Optimized geometries and relative energies were obtained, and it was shown that the most stable species is the E-enol-imine form, which may exist in four low-energy intramolecularly hydrogen-bonded forms (I, II, V, and VI) that are almost isoenergetic. These conformers were concluded to exist in the gas phase equilibrium with nearly equal populations. On the other hand, the infrared spectra of the compound isolated in a cryogenic argon matrix (10 K) are compatible with the presence in the matrix of only two of these conformers (conformers II and V), while conformers I and VI convert to these ones by quantum mechanical tunneling through the barrier associated with the rotation of the OH phenolic group around the C-O bond. The matrix isolation infrared spectrum was then assigned and interpreted with help of the DFT(B3LYP)/6-311++G(d,p) calculated infrared spectra for conformers II and V. In addition, natural bond orbital (NBO) analysis was performed on the most stable conformer of the experimentally relevant isomeric form (E-enol-imino conformer V) to shed light on details of its electronic structure. This investigation stresses the fundamental structural relevance of the O-H···N intramolecular H-bond in o-hydroxyaryl Schiff base compounds.

8.
Rev Sci Instrum ; 92(12): 124104, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34972403

RESUMEN

In this article, a new multi-functional high-vacuum astrophysical ice setup, VIZSLA (Versatile Ice Zigzag Sublimation Setup for Laboratory Astrochemistry), is introduced. The instrument allows for the investigation of astrophysical processes both in a low-temperature para-H2 matrix and in astrophysical analog ices. In the para-H2 matrix, the reaction of astrochemical molecules with H atoms and H+ ions can be studied effectively. For the investigation of astrophysical analog ices, the setup is equipped with various irradiation and particle sources: an electron gun for modeling cosmic rays, an H atom beam source, a microwave H atom lamp for generating H Lyman-α radiation, and a tunable (213-2800 nm) laser source. For analysis, an FT-IR (and a UV-visible) spectrometer and a quadrupole mass analyzer are available. The setup has two cryostats, offering novel features for analysis. Upon the so-called temperature-programmed desorption (TPD), the molecules, desorbing from the substrate of the first cryogenic head, can be mixed with Ar and can be deposited onto the substrate of the other cryogenic head. The efficiency of the redeposition was measured to be between 8% and 20% depending on the sample and the redeposition conditions. The well-resolved spectrum of the molecules isolated in an Ar matrix serves a unique opportunity to identify the desorbing products of a processed ice. Some examples are provided to show how the para-H2 matrix experiments and the TPD-matrix-isolation recondensation experiments can help understand astrophysically important chemical processes at low temperatures. It is also discussed how these experiments can complement the studies carried out by using similar astrophysical ice setups.

9.
Phys Chem Chem Phys ; 21(45): 24935-24949, 2019 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-31701978

RESUMEN

An imino group was used for the first time as a vibrational antenna to manipulate molecular conformations. Imino-thiol isomers of thioacetamide were generated upon UV-irradiation of its amino-thione tautomer isolated in argon matrices at 11 K. Selective and reversible conformational isomerizations were induced by narrowband near-IR irradiation tuned at the frequencies of the 2ν(NH) first stretching overtone of each imino-thiol isomer. The conformational isomerization concerns the change in the orientation of a remote -SH group, while the orientation of the imino (C[double bond, length as m-dash]NH) group remains the same. Supported by quantum chemical anharmonic computations, this allowed for a reliable, isomer-selective vibrational assignment of the four imino-thiol isomers extending now over the full mid-IR and near-IR ranges. It was found that the experimental IR intensities of the 2ν(NH) first stretching overtones (computed 4-5 km mol-1) of the imino-thiol forms are comparable to those of the ν(NH) stretching fundamentals (computed 2-4 km mol-1). This is the first time such a phenomenon is reported for an imine molecule. The kinetics of conformational isomerization was monitored in situ, indicating that the irradiation-induced processes are significantly faster than the tunneling-driven spontaneous cis-trans rotamerization of the -SH group. Quantum yields for the rotamerizations of the -SH group resulting from the vibrational excitation of a remote -NH group were estimated and found to be comparable to those observed for matrix-isolated carboxylic acids and amino acids, where conformational changes of the -OH group were induced by the direct vibrational excitation of 2ν(OH) first stretching overtones.

10.
Phys Chem Chem Phys ; 21(31): 17063-17071, 2019 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-31276124

RESUMEN

Rotamerization of a hydroxyl (O-H) group by tunneling is well-known and has been extensively studied. On the other hand, similar tunneling processes for the thiol (S-H) group have not been reported yet. In this work, the imino-thiol forms of thioacetamide were studied in cryogenic matrices (Ar, Xe) after UV-irradiation of the common amino-thione form of the compound. Four different imino-thiol forms were generated, corresponding to the cis or trans thiol (C/T) conformers of the two imino isomers (syn and anti; s/a). Noteworthy, the syn-cis (sC) imino-thiol form was found to convert spontaneously to the syn-trans (sT) form (with a half-life of 80 min), in a process whose reaction rate is independent of the temperature (i.e., at 11 or 20 K). Such conformational transformation represents the first experimental observation of an S-H rotamerization occurring by tunneling. Computations based on the Wentzel-Kramers-Brillouin formalism predict a tunneling half-life for the S-H rotamerization of syn-imino sC to sT on the time scale of minutes, in agreement with the experimental observations.

11.
Phys Chem Chem Phys ; 21(10): 5378-5393, 2019 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-30221272

RESUMEN

Pure methane (CH4) ices processed by energetic electrons under ultra-high vacuum conditions to simulate secondary electrons formed via galactic cosmic rays (GCRs) penetrating interstellar ice mantles have been shown to produce an array of complex hydrocarbons with the general formulae: CnH2n+2 (n = 4-8), CnH2n (n = 3-9), CnH2n-2 (n = 3-9), CnH2n-4 (n = 4-9), and CnH2n-6 (n = 6-7). By monitoring the in situ chemical evolution of the ice combined with temperature programmed desorption (TPD) studies and tunable single photon ionization coupled to a reflectron time-of-flight mass spectrometer, specific isomers of C3H4, C3H6, C4H4, and C4H6 were probed. These experiments confirmed the synthesis of methylacetylene (CH3CCH), propene (CH3CHCH2), cyclopropane (c-C3H6), vinylacetylene (CH2CHCCH), 1-butyne (HCCC2H5), 2-butyne (CH3CCCH3), 1,2-butadiene (H2CCCH(CH3)), and 1,3-butadiene (CH2CHCHCH2) with yields of 2.17 ± 0.95 × 10-4, 3.7 ± 1.5 × 10-3, 1.23 ± 0.77 × 10-4, 1.28 ± 0.65 × 10-4, 4.01 ± 1.98 × 10-5, 1.97 ± 0.98 × 10-4, 1.90 ± 0.84 × 10-5, and 1.41 ± 0.72 × 10-4 molecules eV-1, respectively. Mechanistic studies exploring the formation routes of methylacetylene, propene, and vinylacetylene were also conducted, and revealed the additional formation of the 1,2,3-butatriene isomer. Several of the above isomers, methylacetylene, propene, vinylacetylene, and 1,3-butadiene, have repeatedly been shown to be important precursors in the formation of polycyclic aromatic hydrocarbons (PAHs), but until now their interstellar synthesis has remained elusive.

12.
Nat Commun ; 9(1): 3851, 2018 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-30242164

RESUMEN

Phosphorus signifies an essential element in molecular biology, yet given the limited solubility of phosphates on early Earth, alternative sources like meteoritic phosphides have been proposed to incorporate phosphorus into biomolecules under prebiotic terrestrial conditions. Here, we report on a previously overlooked source of prebiotic phosphorus from interstellar phosphine (PH3) that produces key phosphorus oxoacids-phosphoric acid (H3PO4), phosphonic acid (H3PO3), and pyrophosphoric acid (H4P2O7)-in interstellar analog ices exposed to ionizing radiation at temperatures as low as 5 K. Since the processed material of molecular clouds eventually enters circumstellar disks and is partially incorporated into planetesimals like proto Earth, an understanding of the facile synthesis of oxoacids is essential to untangle the origin of water-soluble prebiotic phosphorus compounds and how they might have been incorporated into organisms not only on Earth, but potentially in our universe as well.

13.
J Phys Chem A ; 122(9): 2329-2343, 2018 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-29442510

RESUMEN

(D3-)Methanol-nitrogen monoxide (CH3OH/CD3OH-NO) ices were exposed to ionizing radiation to facilitate the eventual determination of the CH3NO2 potential energy surface (PES) in the condensed phase. Reaction intermediates and products were monitored via infrared spectroscopy (FTIR) and photoionization reflectron time-of-flight mass spectrometry (PI-ReTOF-MS) during the irradiation and temperature controlled desorption (TPD) phase, respectively. Distinct photoionization energies were utilized to discriminate the isomer(s) formed in these processes. The primary methanol radiolysis products were the methoxy (CH3O) and hydroxymethyl (CH2OH) radicals along with atomic hydrogen. The former was found to react barrierlessly with nitrogen monoxide resulting in the formation of cis- and trans-methyl nitrite (CH3ONO), which is the most abundant product that can be observed in the irradiated samples. On the other hand, the self-recombination of hydroxymethyl radicals yielding ethylene glycol (HO(CH2)2OH) and glycerol (HOCH2CH2(OH)CH2OH) is preferred over the recombination with nitrogen monoxide to nitrosomethanol (HOCH2NO).

14.
Chemphyschem ; 19(5): 556-560, 2018 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-29356279

RESUMEN

Complex organic molecules are ubiquitous in star- and planet-forming regions as well as on comets such as on 67P/Churyumov-Gerasimenko, but their origins have remained largely unexplained until now. Here, we report the first laboratory detection of distinct C3 H8 O (propanol, methyl ethyl ether) and C4 H8 O (n-butanal, i-butanal) isomers formed within interstellar analog ices through interaction with ionizing radiation. This study reveals that complex organics with propyl (C3 H7 ) and butyl (C4 H9 ) groups can be synthesized easily in deep space and may act as key evolutionary tracers of a cosmic ray driven non-equilibrium chemistry in low temperature interstellar ices at 10 K. These processes are of vital importance in initiating a chain of chemical reactions leading to complex organics-some of which are responsible for the flavors of chocolate-not only in the interstellar medium, but also on comet 67P/Churyumov-Gerasimenko.


Asunto(s)
1-Propanol/síntesis química , 2-Propanol/síntesis química , Aldehídos/síntesis química , Monóxido de Carbono/química , Monóxido de Carbono/efectos de la radiación , Cationes , Medio Ambiente Extraterrestre , Isomerismo , Espectrometría de Masas , Metano/química , Metano/efectos de la radiación , Radiación Ionizante
15.
J Phys Chem A ; 121(40): 7477-7493, 2017 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-28892389

RESUMEN

We irradiated binary ice mixtures of ammonia (NH3) and oxygen (O2) ices at astrophysically relevant temperatures of 5.5 K with energetic electrons to mimic the energy transfer process that occurs in the track of galactic cosmic rays. By monitoring the newly formed molecules online and in situ utilizing Fourier transform infrared spectroscopy complemented by temperature-programmed desorption studies with single-photon photoionization reflectron time-of-flight mass spectrometry, the synthesis of hydroxylamine (NH2OH), water (H2O), hydrogen peroxide (H2O2), nitrosyl hydride (HNO), and a series of nitrogen oxides (NO, N2O, NO2, N2O2, N2O3) was evident. The synthetic pathway of the newly formed species, along with their rate constants, is discussed exploiting the kinetic fitting of the coupled differential equations representing the decomposition steps in the irradiated ice mixtures. Our studies suggest the hydroxylamine is likely formed through an insertion mechanism of suprathermal oxygen into the nitrogen-hydrogen bond of ammonia at such low temperatures. An isotope-labeled experiment examining the electron-irradiated D3-ammonia-oxygen (ND3-O2) ices was also conducted, which confirmed our findings. This study provides clear, concise evidence of the formation of hydroxylamine by irradiation of interstellar analogue ices and can help explain the question how potential precursors to complex biorelevant molecules may form in the interstellar medium.

16.
J Phys Chem A ; 121(20): 3879-3890, 2017 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-28445648

RESUMEN

Thin films of ammonium perchlorate (NH4ClO4) were exposed to energetic electrons at 5.5 K to explore the radiolytic decomposition mechanisms. The effects of radiolysis were monitored on line and in situ via Fourier transform infrared spectroscopy (FTIR) in the condensed phase along with electron impact ionization quadrupole mass spectrometry (EI-QMS) and single-photon photoionization reflectron time-of-flight mass spectrometry (PI-ReTOF-MS) during the temperature-programmed desorption (TPD) phase to probe the subliming molecules. Three classes of molecules were observed: (i) nitrogen bearing species [ammonia (NH3), hydroxylamine (NH2OH), molecular nitrogen (N2), nitrogen dioxide (NO2)], (ii) chlorine carrying molecules [chlorine monoxide (ClO), chlorine dioxide (ClO2), dichlorine trioxide (Cl2O3)], and (iii) molecular oxygen (O2). Decay profiles of the reactants along with the growth profiles of the products as derived from the infrared data were fit kinetically to obtain a reaction mechanism with the initial steps involving a proton loss from the ammonium ion (NH4+) yielding ammonia (NH3) and the decomposition of perchlorate ion (ClO4-) forming chlorate ion (ClO3-) plus atomic oxygen. The latter oxidized ammonia to hydroxylamine and ultimately to nitrogen dioxide. Molecular oxygen and nitrogen were found to be formed via recombination of atomic oxygen and multistep radiolysis of ammonia, respectively.

17.
Chemphyschem ; 18(8): 882-889, 2017 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-28129476

RESUMEN

Exploiting photoionization reflectron time-of-flight mass spectrometry (PI-ReTOF-MS) combined with electronic structure calculations, it is shown that the hitherto elusive silylketene molecule (H3 SiC(H)=C=O)-the isovalent counterpart of the well-known methylketene molecule-is forming via interaction of energetic electrons with low-temperature silane-carbon monoxide ices. In combination with the infrared spectroscopically detected triplet dicarbon monoxide reactant, electronic structure calculations suggest that dicarbon monoxide reacts with silane via a de facto insertion of the terminal carbon atom into a silicon-hydrogen single bond. This is followed by non-adiabatic reaction dynamics triggered by the heavy silicon atom intersystem crossing from the triplet to the singlet manifold, eventually leading to the formation of silylketene. The non-equilibrium nature of the elementary reactions within the exposed ices results in an exciting and novel chemistry which cannot be explored via traditional preparative chemistry. Since the replacement of hydrogen in silane can introduce side groups such as silyl or alkyl, the reaction of triplet dicarbon monoxide with silane represents the parent system for a previously disregarded reaction class revealing an elegant path to access the largely reactive group of silylketenes.

18.
Chirality ; 27(9): 625-34, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26087405

RESUMEN

The rotational strengths and the robustness values of amide-I and amide-II vibrational modes of For(AA)n NHMe (where AA is Val, Asn, Asp, or Cys, n = 1-5 for Val and Asn; n = 1 for Asp and Cys) model peptides with α-helix and ß-sheet backbone conformations were computed by density functional methods. The robustness results verify empirical rules drawn from experiments and from computed rotational strengths linking amide-I and amide-II patterns in the vibrational circular dichroism (VCD) spectra of peptides with their backbone structures. For peptides with at least three residues (n ≥ 3) these characteristic patterns from coupled amide vibrational modes have robust signatures. For shorter peptide models many vibrational modes are nonrobust, and the robust modes can be dependent on the residues or on their side chain conformations in addition to backbone conformations. These robust VCD bands, however, provide information for the detailed structural analysis of these smaller systems.


Asunto(s)
Amidas/química , Dicroismo Circular , Péptidos/química , Vibración , Modelos Moleculares , Estructura Secundaria de Proteína , Rotación , Estereoisomerismo
19.
J Phys Chem B ; 118(8): 2093-103, 2014 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-24479484

RESUMEN

Six conformers of α-cysteine were identified by matrix isolation IR spectroscopy combined with NIR laser irradiation. Five of these conformers are identical with the five out of six conformers that have recently been identified by microwave spectroscopy. The sixth conformer observed in the present study is a short-lived conformer, which decays by H-atom tunneling; its half-life in a 12 K N2 matrix is (1.1 ± 0.5) × 10(3) s. This study proves that matrix isolation IR spectroscopy combined with NIR laser irradiation is a suitable method to identify conformers of a complex system for which computations predict several dozens of conformers, and that the reliability of this method for conformational assignment is comparable to that of microwave spectroscopy.


Asunto(s)
Cisteína/química , Modelos Moleculares , Conformación Molecular , Espectroscopía Infrarroja Corta , Argón/química , Rayos Láser
20.
J Phys Chem A ; 116(20): 4823-32, 2012 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-22554056

RESUMEN

Former assignments of the matrix-isolation infrared (MI-IR) spectrum of 2-chloropropionic acid are revised with the help of near-infrared (NIR) laser irradiation induced change in conformer ratios. This method allows not only the unambiguous assignment of each band in the MI-IR spectrum to the two trans (Z) and the cis (E) conformers but also the assignment of the spectral bands to different matrix sites. The tunneling decay of the higher-energy cis conformer prepared from both trans conformers in different sites is also investigated. It is shown that the tunneling decay time is very sensitive to the matrix site, especially if the in situ prepared high-energy conformer has a strained geometry in the matrix cage. The analysis shows that the kinetics of some cis → trans back conversion processes cannot be fitted by a single exponential decay. The possible reasons of this observation are examined and discussed. The present and former results clearly show that, in addition to tunneling processes, the decay rates strongly depend on solid-state effects. Therefore, simple theoretical predictions of decay rates, which do not take into account the solid-state effects, can only be compared to experimental observations only if experimentally proven that these effects do not significantly affect the experimentally measured tunneling rates.


Asunto(s)
Argón/química , Hidrógeno/química , Rayos Infrarrojos , Propionatos/química , Temperatura , Hidrocarburos Clorados , Cinética , Conformación Molecular , Teoría Cuántica , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...