Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Plant Physiol Biochem ; 155: 196-212, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32771931

RESUMEN

Insect pests such as Anticarsia gemmatalis cause defoliation and yield losses. Soybean breeding has obtained resistant genotypes, however the mechanism remains unknown. Studies indicated the presence of deterrents compounds in the resistant genotype IAC17, and their leaf metabolite profiles were compared to the susceptible genotype UFV105, which was elicited or not by caterpillar infestation. Cluster analysis indicated a significative distinction between these profiles as well as differences in plant defense pathways. Methylquercetins were constitutively present in the largest concentrations, specifically in the IAC17. Relationship between the resistance and the levels of phytohormones jasmonic acid, abscisic acid and salicylic acid was not observed. However, 1-aminocyclopropane -1carboxylic acid levels indicated that the ethylene may be involved in the constitutive biosynthesis of bioactive compounds. Extracts were added to the diets at three different concentrations to evaluate the effect on caterpillar survival. Lowest survival rates were observed when extracts from the resistant IAC 17 were used, at the lowest concentrations. Survival rates were not higher when IAC 17 infested by caterpillars were used. On the other hand, when extracts from the susceptible were used, the survival reductions were only observed in the highest extract concentrations. These supplementations of the diet reduced the digestive capacity, agreeing with the proteolytic activities, whereas malformations of the intestinal cells were dose dependent. The inhibitory effects persisted in higher dilutions only for the IAC17. Constitutive resistance was also explained by higher levels of protease inhibition. These results can be useful to elucidate the genes and cascades controlling the resistance.


Asunto(s)
Glycine max/genética , Lepidópteros/fisiología , Metaboloma , Hojas de la Planta/metabolismo , Animales , Digestión , Genotipo , Herbivoria , Larva/fisiología
2.
PLoS One ; 13(10): e0205010, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30281662

RESUMEN

Attack by herbivores is a major biotic stress limiting the soybean crop production. Plant defenses against caterpillars include the production of secondary metabolites such as flavonoids, which constitute a diverse group of plant secondary metabolites. Thus, a more discriminate metabolic profiling between genotypes are important for a more comprehensive and reliable characterization of soybean resistance. Therefore, in this study a non-targeted LC/MS-based for analysis of flavonoid profiles of soybean genotypes contrasting to the resistance to A. gemmatalis was applied. Clustering analysis revealed profiles highly distinct between the susceptible UFV 105 AP and the resistant IAC 17 genotypes. This comparative approach enables to identify directly from leaf extract some new compounds related to resistance, some of which were present in higher abundance specifically in the IAC 17 genotype: four Quercetin conjugates, Rutin (Quercetin 3-O-Rutinoside), Quercetin-3,7-O- di-glucoside, Quercetin-3-O-rhamnosylglycoside-7-O-glucoside and Quercetin-3-O-rhamnopyranosyl-glucopyranoside-rhamnopyranoside; two Genistein conjugates, Genistein-7-O-diglucoside-dimalonylated and Genistein-7-O-6-O-malonylglucoside; and one Daidzein conjugate, Daidzein-7-O-Glucoside-malonate. The most abundant flavonoid glycoconjugates in soybean leaves belongs to Quercetin and Kaempferol classes. However, only one from the identified compounds was classified as a Kaempferol. The Kaempferol-3-O-L-rhamnopyranosyl-glucopyranoside showed high abundance in the resistant genotype IAC 17. The metabolic profiles generated by LC/MS allowed the reconstruction of the flavonoid biosynthetic pathways, which revealed a constitutive character for herbivory resistance in the resistant genotype IAC-17 and a metabolic regulation for the rechanneling of Quercetin, Kaempferol and Genistein conjugates in soybean. Highest relative abundances were detected for glyconjugates, such as Rutin, Quercetin 3-O-rhamnosylglycoside-7-O-glucoside and Quercitin-3-O-rhamnopyranosyl-glucopyranoside-rhamnopyranoside in the leaves of the resistant genotype.


Asunto(s)
Flavonoides/metabolismo , Genotipo , Glycine max/genética , Glycine max/metabolismo , Lepidópteros/fisiología , Animales , Cromatografía Liquida , Glycine max/fisiología , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...