RESUMEN
This study asked whether the P2X7 receptor was necessary and sufficient to trigger astrocyte polarization into neuroinflammatory activation states. Intravitreal injection of agonist BzATP increased gene expression of pan-astrocyte activation markers Gfap, Steap4, and Vim and A1-type astrocyte activation markers C3, Serping1, and H2T23, but also the Cd14 and Ptx3 genes usually associated with the A2-type astrocyte activation state and Tnfa, IL1a, and C1qa, assumed to be upstream of astrocyte activation in microglia. Correlation analysis of gene expression suggested the P2X7 receptor induced a mixed A1/A2-astrocyte activation state, although A1-state genes like C3 increased the most. A similar pattern of mixed glial activation genes occurred one day after intraocular pressure (IOP) was elevated in wild-type mice, but not in P2X7-/- mice, suggesting the P2X7 receptor is necessary for the glial activation that accompanies IOP elevation. In summary, this study suggests stimulation of the P2X7R is necessary and sufficient to trigger the astrocyte activation in the retina following IOP elevation, with a rise in markers for pan-, A1-, and A2-type astrocyte activation. The P2X7 receptor is expressed on microglia, optic nerve head astrocytes, and retinal ganglion cells (RGCs) in the retina, and can be stimulated by the mechanosensitive release of ATP that accompanies IOP elevation. Whether the P2X7 receptor connects this mechanosensitive ATP release to microglial and astrocyte polarization in glaucoma remains to be determined.
Asunto(s)
Adenosina Trifosfato , Astrocitos , Receptores Purinérgicos P2X7 , Receptores Purinérgicos P2X7/metabolismo , Receptores Purinérgicos P2X7/genética , Animales , Astrocitos/metabolismo , Ratones , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/análogos & derivados , Ratones Noqueados , Ratones Endogámicos C57BL , Presión Intraocular , Biomarcadores , Masculino , Retina/metabolismo , Microglía/metabolismoRESUMEN
Oxidative stress has been implicated in the pathogenesis of age-related macular degeneration, the leading cause of blindness in older adults, with retinal pigment epithelium (RPE) cells playing a key role. To better understand the cytotoxic mechanisms underlying oxidative stress, we used cell culture and mouse models of iron overload, as iron can catalyze reactive oxygen species formation in the RPE. Iron-loading of cultured induced pluripotent stem cell-derived RPE cells increased lysosomal abundance, impaired proteolysis and reduced the activity of a subset of lysosomal enzymes, including lysosomal acid lipase (LIPA) and acid sphingomyelinase (SMPD1). In a liver-specific Hepc (Hamp) knockout murine model of systemic iron overload, RPE cells accumulated lipid peroxidation adducts and lysosomes, developed progressive hypertrophy and underwent cell death. Proteomic and lipidomic analyses revealed accumulation of lysosomal proteins, ceramide biosynthetic enzymes and ceramides. The proteolytic enzyme cathepsin D (CTSD) had impaired maturation. A large proportion of lysosomes were galectin-3 (Lgals3) positive, suggesting cytotoxic lysosomal membrane permeabilization. Collectively, these results demonstrate that iron overload induces lysosomal accumulation and impairs lysosomal function, likely due to iron-induced lipid peroxides that can inhibit lysosomal enzymes.
Asunto(s)
Sobrecarga de Hierro , Proteómica , Ratones , Animales , Estrés Oxidativo , Lisosomas/metabolismo , Hierro/metabolismo , Sobrecarga de Hierro/metabolismo , Sobrecarga de Hierro/patología , Células Epiteliales/metabolismo , Pigmentos Retinianos/metabolismo , Epitelio Pigmentado de la Retina/metabolismoRESUMEN
OBJECTIVE: To describe the clinical results of patients admitted and managed as cases of placenta accreta spectrum (PAS) at a Central American public hospital and the influence of the prenatal diagnosis on the condition. MATERIALS AND METHODS: A retrospective analysis of PAS patients treated at Hospital Bertha Calderón Roque, in Managua, Nicaragua, between June 2017 and September 2021. The diagnostic criteria used were those of the International Federation of Gynecology and Obstetrics (Fédération Internationale de Gynécologie et d'Obstétrique, FIGO, in French). The population was divided into patients with a prenatal ultrasonographic diagnosis of PAS (group 1) and those whose the diagnosis of PAS was established at the time of the caesarean section (group 2). RESULTS: During the search, we found 103 cases with a histological and/or clinical diagnosis of PAS; groups 1 and 2 were composed of 51 and 52 patients respectively. Regarding the clinical results of both groups, the patients in group 1 presented a lower frequency of transfusions (56.9% versus 96.1% in group 2), use of a lower number of red blood cell units (RBCUs) among those undergoing transfusions (median: 1; interquartile range: [IQR]: 0-4 versus median: 3; [IQR]: 2-4] in group 2), and lower frequency of 4 or more RBCU transfusions (29.4% versus 46.1% in group 2). Group 1 also exhibited a non-significant trend toward a lower volume of blood loss (1,000 mL [IQR]: 750-2,000 mL versus 1,500 mL [IQR]: 1,200-1,800 mL in group 2), and lower requirement of pelvic packing (1.9% versus 7.7% in group 2). CONCLUSION: Establishing a prenatal diagnosis of PAS is related to a lower frequency of transfusions. We observed a high frequency of prenatal diagnostic failures of PAS. It is a priority to improve prenatal detection of this disease.
Asunto(s)
Placenta Accreta , Embarazo , Humanos , Femenino , Placenta Accreta/diagnóstico por imagen , Cesárea , Ultrasonografía Prenatal , Estudios Retrospectivos , Diagnóstico Prenatal/métodos , PlacentaRESUMEN
Abstract Objective To describe the clinical results of patients admitted and managed as cases of placenta accreta spectrum (PAS) at a Central American public hospital and the influence of the prenatal diagnosis on the condition. Materials and Methods A retrospective analysis of PAS patients treated at Hospital Bertha Calderón Roque, in Managua, Nicaragua, between June 2017 and September 2021. The diagnostic criteria used were those of the International Federation of Gynecology and Obstetrics (Fédération Internationale de Gynécologie et d'Obstétrique, FIGO, in French). The population was divided into patients with a prenatal ultrasonographic diagnosis of PAS (group 1) and those whose the diagnosis of PAS was established at the time of the caesarean section (group 2). Results During the search, we found 103 cases with a histological and/or clinical diagnosis of PAS; groups 1 and 2 were composed of 51 and 52 patients respectively. Regarding the clinical results of both groups, the patients in group 1 presented a lower frequency of transfusions (56.9% versus 96.1% in group 2), use of a lower number of red blood cell units (RBCUs) among those undergoing transfusions (median: 1; interquartile range: [IQR]: 0-4 versus median: 3; [IQR]: 2-4] in group 2), and lower frequency of 4 or more RBCU transfusions (29.4% versus 46.1% in group 2). Group 1 also exhibited a non-significant trend toward a lower volume of blood loss (1,000 mL [IQR]: 750-2,000 mL versus 1,500 mL [IQR]: 1,200-1,800 mL in group 2), and lower requirement of pelvic packing (1.9% versus 7.7% in group 2). Conclusion Establishing a prenatal diagnosis of PAS is related to a lower frequency of transfusions. We observed a high frequency of prenatal diagnostic failures of PAS. It is a priority to improve prenatal detection of this disease.
Asunto(s)
Humanos , Femenino , Embarazo , Placenta Accreta/diagnóstico por imagen , Procedimientos Quirúrgicos Operativos , Transfusión Sanguínea , Ultrasonografía PrenatalRESUMEN
OBJECTIVE: To evaluate survival outcomes of fetuses with right sided congenital diaphragmatic hernia (CDH) treated in Latin American centres and to assess the utility of left lung area to predict neonatal survival. METHODS: A retrospective cohort including isolated right sided CDH cases managed expectantly during pregnancy in six tertiary centers from five Latin American countries. The utility of the observed/expected lung-to-head ratio (O/E-LHR) in predicting neonatal survival was assessed, and the best cut-off to predict prognosis was automatically selected by decision tree analysis. RESULTS: A total of 99 right sided CDH cases were recruited, 58 isolated fetuses were selected at a median gestational age of 26.2 weeks, showing an overall survival rate of 26.2%. A linear trend was observed between survival and the O/E-LHR, showing that at higher O/E-LHR, the greater probability of survival (r = 0.56, p < 0.001). O/E-LHR discriminates two groups with different survival outcomes: fetuses with an O/E-LHR ≥65% showed a significantly higher survival rate than those with an O/E-LHR <65% (81.8% vs. 15.6%, p < 0.01). CONCLUSIONS: Overall survival rate in right sided CDH is lower in Latin American countries. The severity category of pulmonary hypoplasia should be classified according to lung area and the survival rate in such population.
Asunto(s)
Hernias Diafragmáticas Congénitas , Femenino , Feto , Edad Gestacional , Hernias Diafragmáticas Congénitas/diagnóstico por imagen , Humanos , Lactante , Recién Nacido , América Latina/epidemiología , Pulmón/diagnóstico por imagen , Embarazo , Sistema de Registros , Estudios Retrospectivos , Ultrasonografía PrenatalAsunto(s)
Placenta Accreta , Placenta Previa , Cesárea , Femenino , Humanos , Histerectomía , Placenta , Placenta Accreta/cirugía , Embarazo , Mejoramiento de la Calidad , Estudios RetrospectivosRESUMEN
Intrauterine growth restriction (IUGR) refers to poor growth of a fetus during pregnancy due to deficient maternal nutrition or oxygen supply. Supplementation of a mother's diet with antioxidants, such as hydroxytyrosol (HTX), has been proposed to ameliorate the adverse phenotypes of IUGR. In the present study, sows were treated daily with or without 1.5 mg of HTX per kilogram of feed from day 35 of pregnancy (at 30% of the total gestational period), and fetuses were sampled at day 100 of gestation. Fetuses were classified as normal body weight (NBW) or low body weight (LBW) as a consequence of IUGR, constituting four groups: NBW-Control, NBW-HTX, LBW-Control, and LBW-HTX. The brain was removed, and the hippocampus, amygdala, and prefrontal cortex were rapidly dissected. Neuronal markers were studied by immunohistochemistry, and a decrease in the number of mature neurons in the hippocampal Cornu Ammonis subfield 1 (CA1) and the Dentate Gyrus (DG) regions was observed in LBW fetuses together with a higher number of immature neurons and other alterations in neuronal morphology. Furthermore, IUGR conditions altered the neurotransmitter (NT) profile, since an increase in the serotonin (5-HT) pathway was observed in LBW fetuses. Supplementation with HTX was able to reverse the morphological and neurochemical changes, leading both characteristics to values similar to those of NBW fetuses.
RESUMEN
BACKGROUND: The identification of endogenous signals that lead to microglial activation is a key step in understanding neuroinflammatory cascades. As ATP release accompanies mechanical strain to neural tissue, and as the P2X7 receptor for ATP is expressed on microglial cells, we examined the morphological and molecular consequences of P2X7 receptor stimulation in vivo and in vitro and investigated the contribution of the P2X7 receptor in a model of increased intraocular pressure (IOP). METHODS: In vivo experiments involved intravitreal injections and both transient and sustained elevation of IOP. In vitro experiments were performed on isolated mouse retinal and brain microglial cells. Morphological changes were quantified in vivo using Sholl analysis. Expression of mRNA for M1- and M2-like genes was determined with qPCR. The luciferin/luciferase assay quantified retinal ATP release while fura-2 indicated cytoplasmic calcium. Microglial migration was monitored with a Boyden chamber. RESULTS: Sholl analysis of Iba1-stained cells showed retraction of microglial ramifications 1 day after injection of P2X7 receptor agonist BzATP into mouse retinae. Mean branch length of ramifications also decreased, while cell body size and expression of Nos2, Tnfa, Arg1, and Chil3 mRNA increased. BzATP induced similar morphological changes in ex vivo tissue isolated from Cx3CR1+/GFP mice, suggesting recruitment of external cells was unnecessary. Immunohistochemistry suggested primary microglial cultures expressed the P2X7 receptor, while functional expression was demonstrated with Ca2+ elevation by BzATP and block by specific antagonist A839977. BzATP induced process retraction and cell body enlargement within minutes in isolated microglial cells and increased Nos2 and Arg1. While ATP increased microglial migration, this required the P2Y12 receptor and not P2X7 receptor. Transient elevation of IOP led to microglial process retraction, cell body enlargement, and gene upregulation paralleling changes observed with BzATP injection, in addition to retinal ATP release. Pressure-dependent changes were reduced in P2X7-/- mice. Death of retinal ganglion cells accompanied increased IOP in C57Bl/6J, but not P2X7-/- mice, and neuronal loss showed some association with microglial activation. CONCLUSIONS: P2X7 receptor stimulation induced rapid morphological activation of microglial cells, including process retraction and cell body enlargement, and upregulation of markers linked to both M1- and M2-type activation. Parallel responses accompanied IOP elevation, suggesting ATP release and P2X7 receptor stimulation influence the early microglial response to increased pressure.
Asunto(s)
Glaucoma/metabolismo , Glaucoma/patología , Microglía/metabolismo , Microglía/patología , Receptores Purinérgicos P2X7/metabolismo , Animales , Ratones , Ratones Endogámicos C57BL , Regulación hacia ArribaRESUMEN
BACKGROUND: Diseases and disorders with a chronic neuroinflammatory component are often linked with changes in brain metabolism. Among neurodegenerative disorders, people living with human immunodeficiency virus (HIV) and Alzheimer's disease (AD) are particularly vulnerable to metabolic disturbances, but the mechanistic connections of inflammation, neurodegeneration and bioenergetic deficits in the central nervous system (CNS) are poorly defined. The particularly interesting new cysteine histidine-rich-protein (PINCH) is nearly undetectable in healthy mature neurons, but is robustly expressed in tauopathy-associated neurodegenerative diseases including HIV infection and AD. Although robust PINCH expression has been reported in neurons in the brains of patients with HIV and AD, the molecular mechanisms and cellular consequences of increased PINCH expression in CNS disease remain largely unknown. METHODS: We investigated the regulatory mechanisms responsible for PINCH protein-mediated changes in bioenergetics, mitochondrial subcellular localization and bioenergetic deficits in neurons exposed to physiological levels of TNFα or the HIV protein Tat. Changes in the PINCH-ILK-Parvin (PIP) complex association with cofilin and TESK1 were assessed to identify factors responsible for actin depolymerization and mitochondrial mislocalization. Lentiviral and pharmacological inhibition experiments were conducted to confirm PINCH specificity and to reinstate proper protein-protein complex communication. RESULTS: We identified MEF2A as the PINCH transcription factor in neuroinflammation and determined the biological consequences of increased PINCH in neurons. TNFα-mediated activation of MEF2A via increased cellular calcium induced PINCH, leading to disruption of the PIP ternary complex, cofilin activation by TESK1 inactivation, and actin depolymerization. The disruption of actin led to perinuclear mislocalization of mitochondria by destabilizing the kinesin-dependent mitochondrial transport machinery, resulting in impaired neuronal metabolism. Blocking TNFα-induced PINCH expression preserved mitochondrial localization and maintained metabolic functioning. CONCLUSIONS: This study reported for the first time the mechanistic and biological consequences of PINCH expression in CNS neurons in diseases with a chronic neuroinflammation component. Our findings point to the maintenance of PINCH at normal physiological levels as a potential new therapeutic target for neurodegenerative diseases with impaired metabolisms.
Asunto(s)
Actinas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/biosíntesis , Destrina/metabolismo , Mediadores de Inflamación/metabolismo , Proteínas con Dominio LIM/biosíntesis , Mitocondrias/metabolismo , Neuronas/metabolismo , Actinas/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Encéfalo/metabolismo , Encéfalo/patología , Células Cultivadas , Destrina/genética , Feto , Expresión Génica , Humanos , Proteínas con Dominio LIM/genética , Proteínas de la Membrana/biosíntesis , Proteínas de la Membrana/genética , Mitocondrias/patología , Neuronas/patologíaRESUMEN
The MAP kinase ERK5 contains an N-terminal kinase domain and a unique C-terminal tail including a nuclear localization signal and a transcriptional activation domain. ERK5 is activated in response to growth factors and stresses and regulates transcription at the nucleus by either phosphorylation or interaction with transcription factors. MEK5-ERK5 pathway plays an important role regulating cancer cell proliferation and survival. Therefore, it is important to define the precise molecular mechanisms implicated in ERK5 nucleo-cytoplasmic shuttling. We previously described that the molecular chaperone Hsp90 stabilizes and anchors ERK5 at the cytosol and that ERK5 nuclear shuttling requires Hsp90 dissociation. Here, we show that MEK5 or overexpression of Cdc37-mechanisms that increase nuclear ERK5-induced ERK5 Small Ubiquitin-related Modifier (SUMO)-2 modification at residues Lys6/Lys22 in cancer cells. Furthermore, mutation of these SUMO sites abolished the ability of ERK5 to translocate to the nucleus and to promote prostatic cancer PC-3 cell proliferation. We also show that overexpression of the SUMO protease SENP2 completely abolished endogenous ERK5 nuclear localization in response to epidermal growth factor (EGF) stimulation. These results allow us to propose a more precise mechanism: in response to MEK5 activation, ERK5 SUMOylation favors the dissociation of Hsp90 from the complex, allowing ERK5 nuclear shuttling and activation of the transcription.
Asunto(s)
Transporte Activo de Núcleo Celular/genética , Proteína Quinasa 7 Activada por Mitógenos/genética , Proteína Quinasa 7 Activada por Mitógenos/metabolismo , Animales , Biomarcadores , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Células Cultivadas , Chaperoninas/genética , Chaperoninas/metabolismo , Activación Enzimática , Técnica del Anticuerpo Fluorescente , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Lisina/metabolismo , Modelos Biológicos , Unión Proteica , Sumoilación , Transcripción GenéticaRESUMEN
In pre-weaning calves, both leucine and threonine play important roles in growth and muscle metabolism. In this study, metabolomics, proteomics and clinical chemistry were used to assess the effects of leucine and threonine supplementation added to milk replacer on 14 newborn Holstein male calves: 7 were fed a control diet (Ctrl) and 7 were fed the Ctrl diet supplemented with 0.3% leucine and 0.3% threonine (LT) from 5.6â¯days of age to 53.6â¯days. At this time, blood and semitendinosus muscle biopsies were collected for analysis. Integrated metabolomics and proteomics showed that branched-chain amino acids (BCAA) degradation and mitochondrial oxidative metabolism (citrate cycle and respiratory chain) were the main activated pathways in muscle because of the supplementation. BCAA derivatives and metabolites related to lipid mobilization showed the major changes. The deleterious effects of activated oxidative phosphorylation were balanced by the upregulation of antioxidant proteins. An increase in protein synthesis was indicated by elevated aminoacyl-tRNA biosynthesis and increased S6 ribosomal protein phosphorylation in skeletal muscle. In conclusion, LT group showed greater BCAA availability and mitochondrial oxidative activity; as the muscle cells undergo greater aerobic metabolism, antioxidant defenses were activated to compensate for possible cell damage. Data are available via ProteomeXchange (PXD016098). SIGNIFICANCE: Leucine and threonine are essential amino acids for the pre-weaning calf, being of high importance for growth. In this study, we found that leucine and threonine supplementation of milk replacer to feed pre-weaning calves led to differences in the proteome, metabolome and clinical chemistry analytes in skeletal muscle and plasma, albeit no differences in productive performance were recorded. This study extends our understanding on the metabolism in dairy calves and helps optimizing their nutritional status.
Asunto(s)
Metaboloma , Proteoma , Alimentación Animal/análisis , Animales , Bovinos , Dieta , Suplementos Dietéticos , Leucina/metabolismo , Masculino , Leche , Músculo Esquelético/metabolismo , Proteoma/metabolismo , Treonina/metabolismo , DesteteRESUMEN
Leukotoxin (LtxA), from oral pathogen Aggregatibacter actinomycetemcomitans, is a secreted membrane-damaging protein. LtxA is internalized by ß2 integrin LFA-1 (CD11a/CD18)-expressing leukocytes and ultimately causes cell death; however, toxin localization in the host cell is poorly understood and these studies fill this void. We investigated LtxA trafficking using multi-fluor confocal imaging, flow cytometry and Rab5a knockdown in human T lymphocyte Jurkat cells. Planar lipid bilayers were used to characterize LtxA pore-forming activity at different pHs. Our results demonstrate that the LtxA/LFA-1 complex gains access to the cytosol of Jurkat cells without evidence of plasma membrane damage, utilizing dynamin-dependent and presumably clathrin-independent mechanisms. Upon internalization, LtxA follows the LFA-1 endocytic trafficking pathways, as identified by co-localization experiments with endosomal and lysosomal markers (Rab5, Rab11A, Rab7, and Lamp1) and CD11a. Knockdown of Rab5a resulted in the loss of susceptibility of Jurkat cells to LtxA cytotoxicity, suggesting that late events of LtxA endocytic trafficking are required for toxicity. Toxin trafficking via the degradative endocytic pathway may culminate in the delivery of the protein to lysosomes or its accumulation in Rab11A-dependent recycling endosomes. The ability of LtxA to form pores at acidic pH may result in permeabilization of the endosomal and lysosomal membranes.
Asunto(s)
Colelitiasis , Atención Prenatal , Femenino , Feto , Humanos , Embarazo , Ultrasonografía PrenatalRESUMEN
Bone homeostasis intimately relies on the balance between osteoblasts (OBs) and osteoclasts (OCs). Our previous studies have revealed that regulator of G protein signaling protein 12 (Rgs12), the largest protein in the Rgs super family, is essential for osteoclastogenesis from hematopoietic cells and OC precursors. However, how Rgs12 regulates OB differentiation and function is still unknown. To understand that, we generated an OB-targeted Rgs12 conditional knockout (CKO) mice model by crossing Rgs12fl/fl mice with Osterix (Osx)-Cre transgenic mice. We found that Rgs12 was highly expressed in both OB precursor cells (OPCs) and OBs of wild-type (WT) mice, and gradually increased during OB differentiation, whereas Rgs12-CKO mice (OsxCre/+ ; Rgs12fl/fl ) exhibited a dramatic decrease in both trabecular and cortical bone mass, with reduced numbers of OBs and increased apoptotic cell population. Loss of Rgs12 in OPCs in vitro significantly inhibited OB differentiation and the expression of OB marker genes, resulting in suppression of OB maturation and mineralization. Further mechanism study showed that deletion of Rgs12 in OPCs significantly inhibited guanosine triphosphatase (GTPase) activity and cyclic adenosine monophosphate (cAMP) level, and impaired Calcium (Ca2+ ) oscillations via restraints of major Ca2+ entry sources (extracellular Ca2+ influx and intracellular Ca2+ release from endoplasmic reticulum), partially contributed by the blockage of L-type Ca2+ channel mediated Ca2+ influx. Downstream mediator extracellular signal-related protein kinase (ERK) was found inactive in OBs of OsxCre/+ ; Rgs12fl/fl mice and in OPCs after Rgs12 deletion, whereas application of pertussis toxin (PTX) or overexpression of Rgs12 could rescue the defective OB differentiation via restoration of ERK phosphorylation. Our findings reveal that Rgs12 is an important regulator during osteogenesis and highlight Rgs12 as a potential therapeutic target for bone disorders. © 2018 American Society for Bone and Mineral Research.
Asunto(s)
Señalización del Calcio , Diferenciación Celular , Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Sistema de Señalización de MAP Quinasas , Osteoblastos/metabolismo , Proteínas RGS/metabolismo , Animales , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo , Femenino , Subunidades alfa de la Proteína de Unión al GTP/genética , Masculino , Ratones , Ratones Noqueados , Osteogénesis/genética , Proteínas RGS/genéticaRESUMEN
The oral bacterium, Aggregatibacter actinomycetemcomitans, which is associated with localized aggressive periodontitis, as well as systemic infections including endocarditis, produces numerous virulence factors, including a repeats-in-toxin (RTX) protein called leukotoxin (LtxA), which kills human immune cells. The strains of A. actinomycetemcomitans most closely associated with disease have been shown to produce the most LtxA, suggesting that LtxA plays a significant role in the virulence of this organism. LtxA, like many of the RTX toxins, can be divided into four functional domains: an N-terminal hydrophobic domain, which contains a significant fraction of hydrophobic residues and has been proposed to play a role in the membrane interaction of the toxin; the central domain, which contains two lysine residues that are the sites of post-translational acylation; the repeat domain that is characteristic of the RTX toxins, and a C-terminal domain thought to be involved in secretion. In its initial interaction with the host cell, LtxA must bind to both cholesterol and an integrin receptor, lymphocyte function-associated antigen-1 (LFA-1). While both interactions are essential for toxicity, the domains of LtxA involved remain unknown. We therefore undertook a series of experiments, including tryptophan quenching and trypsin digestion, to characterize the structure of LtxA upon interaction with membranes of various lipid compositions. Our results demonstrate that LtxA adopts a U-shaped conformation in the membrane, with the N- and C-terminal domains residing outside of the membrane.
Asunto(s)
Aggregatibacter actinomycetemcomitans/química , Proteínas Bacterianas/química , Colesterol/química , Proteínas Hemolisinas/química , Antígeno-1 Asociado a Función de Linfocito/química , Factores de Virulencia/química , Aggregatibacter actinomycetemcomitans/crecimiento & desarrollo , Aggregatibacter actinomycetemcomitans/patogenicidad , Secuencia de Aminoácidos , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Sitios de Unión , Colesterol/metabolismo , Dimiristoilfosfatidilcolina/química , Dimiristoilfosfatidilcolina/metabolismo , Proteínas Hemolisinas/aislamiento & purificación , Proteínas Hemolisinas/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Células Jurkat , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Liposomas/química , Liposomas/metabolismo , Antígeno-1 Asociado a Función de Linfocito/metabolismo , Fosfatidiletanolaminas/química , Fosfatidiletanolaminas/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Proteolisis , Tripsina/química , Factores de Virulencia/aislamiento & purificación , Factores de Virulencia/metabolismoRESUMEN
Brain specific kinases (BRSKs) are serine/threonine kinases, preferentially expressed in the brain after Embryonic Day 12. Although BRSKs are crucial neuronal development factors and regulation of their enzymatic activity has been widely explored, little is known of their transcriptional regulation. In this work, we show that Neuronal Growth Factor (NGF) increased the expression of Brsk1 in PC12â¯cells. Furthermore, during neuronal differentiation, Brsk1 mRNA increased through a MAPK-dependent Sp1 activation. To gain further insight into this regulation, we analyzed the transcriptional activity of the Brsk1 promoter in PC12 cells treated with NGF. Initially, we defined the minimal promoter region (-342 to +125 bp) responsive to NGF treatment. This region had multiple Sp1 binding sites, one of which was within a CpG island. In vitro binding assays showed that NGF-induced differentiation increased Sp1 binding to this site and that DNA methylation inhibited Sp1 binding. In vitro methylation of the Brsk1 promoter reduced its transcriptional activity and impaired the NGF effect. To evaluate the participation of DNA methyltransferases in Brsk1 gene regulation, the 5'Aza-dC inhibitor was used. 5'Aza-dC acted synergistically with NGF to promote Brsk1 promoter activity. Accordingly, DNMT3B overexpression abolished the response of the Brsk1 promoter to NGF. Surprisingly, we found Dnmt3b to be a direct target of NGF regulation, via the MAPK pathway. In conclusion, our results provide evidence of a novel mechanism of Brsk1 transcriptional regulation changing the promoter's methylation status, which was incited by the NGF-induced neuronal differentiation process.
Asunto(s)
Encéfalo/efectos de los fármacos , Factor de Crecimiento Nervioso/farmacología , Proteínas Quinasas/metabolismo , Factor de Transcripción Sp1/efectos de los fármacos , Animales , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Regulación de la Expresión Génica/efectos de los fármacos , Metilación/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Células PC12 , Regiones Promotoras Genéticas/genética , Proteínas Quinasas/genética , Ratas , Factor de Transcripción Sp1/fisiologíaRESUMEN
Bromodomains have been pursued intensively over the past several years as emerging targets for the development of anticancer and anti-inflammatory agents. It has recently been shown that some kinase inhibitors are able to potently inhibit the bromodomains of BRD4. The clinical activities of PLK inhibitor BI-2536 and JAK2-FLT3 inhibitor TG101348 have been attributed to this unexpected polypharmacology, indicating that dual-kinase/bromodomain activity may be advantageous in a therapeutic context. However, for target validation and biological investigation, a more selective target profile is desired. Here, we report that benzo[e]pyrimido-[5,4- b]diazepine-6(11H)-ones, versatile ATP-site directed kinase pharmacophores utilized in the development of inhibitors of multiple kinases, including several previously reported kinase chemical probes, are also capable of exhibiting potent BRD4-dependent pharmacology. Using a dual kinase-bromodomain inhibitor of the kinase domains of ERK5 and LRRK2, and the bromodomain of BRD4 as a case study, we define the structure-activity relationships required to achieve dual kinase/BRD4 activity, as well as how to direct selectivity toward inhibition of either ERK5 or BRD4. This effort resulted in identification of one of the first reported kinase-selective chemical probes for ERK5 (JWG-071), a BET selective inhibitor with 1 µM BRD4 IC50 (JWG-115), and additional inhibitors with rationally designed polypharmacology (JWG-047, JWG-069). Co-crystallography of seven representative inhibitors with the first bromodomain of BRD4 demonstrate that distinct atropisomeric conformers recognize the kinase ATP-site and the BRD4 acetyl lysine binding site, conformational preferences supported by rigid docking studies.
Asunto(s)
Proteínas Nucleares/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Pirimidinas/química , Pirimidinas/farmacología , Factores de Transcripción/antagonistas & inhibidores , Benzodiazepinonas/química , Benzodiazepinonas/farmacología , Proteínas de Ciclo Celular , Cristalografía por Rayos X , Células HeLa , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/antagonistas & inhibidores , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/química , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Proteína Quinasa 7 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 7 Activada por Mitógenos/química , Proteína Quinasa 7 Activada por Mitógenos/metabolismo , Modelos Moleculares , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Polifarmacología , Relación Estructura-Actividad , Factores de Transcripción/química , Factores de Transcripción/metabolismoRESUMEN
Treatment of rats with the cholesterol pathway inhibitor AY9944 produces an animal model of Smith-Lemli-Opitz syndrome (SLOS), an autosomal recessive disease caused by defective cholesterol synthesis. This SLOS rat model undergoes progressive and irreversible degeneration of the neural retina, with associated pathological features of the retinal pigmented epithelium (RPE). Here, we provide further insights into the mechanism involved in the RPE pathology. In the SLOS rat model, markedly increased RPE apical autofluorescence is observed, compared to untreated animals, which correlates with increased levels of A2E and other bisretinoids. Utilizing cultured human induced pluripotent stem cell (iPSC)- derived SLOS RPE cells, we found significantly elevated steady-state levels of 7-dehydrocholesterol (7DHC) and decreased cholesterol levels (key biochemical hallmarks of SLOS). Western blot analysis revealed altered levels of the macroautophagy/autophagy markers MAP1LC3B-II and SQSTM1/p62, and build-up of ubiquitinated proteins. Accumulation of immature autophagosomes was accompanied by inefficient degradation of phagocytized, exogenously supplied retinal rod outer segments (as evidenced by persistence of the C-terminal 1D4 epitope of RHO [rhodopsin]) in SLOS RPE compared to iPSC-derived normal human control. SLOS RPE cells exhibited lysosomal pH levels and CTSD activity within normal physiological limits, thus discounting the involvement of perturbed lysosomal function. Furthermore, 1D4-positive phagosomes that accumulated in the RPE in both pharmacological and genetic rodent models of SLOS failed to fuse with lysosomes. Taken together, these observations suggest that defective phagosome maturation underlies the observed RPE pathology. The potential relevance of these findings to SLOS and the requirement of cholesterol for phagosome maturation are discussed.
Asunto(s)
Fagosomas/metabolismo , Epitelio Pigmentado de la Retina/patología , Síndrome de Smith-Lemli-Opitz/patología , Animales , Biomarcadores/metabolismo , Catepsina D/metabolismo , Bovinos , Técnicas de Cultivo de Célula , Deshidrocolesteroles/metabolismo , Modelos Animales de Enfermedad , Humanos , Lisosomas/metabolismo , Fusión de Membrana , Fagocitosis , Biosíntesis de Proteínas , Ratas , Epitelio Pigmentado de la Retina/metabolismo , Retinoides/metabolismo , Segmento Externo de la Célula en Bastón/metabolismo , Síndrome de Smith-Lemli-Opitz/genética , Transcripción Genética , Proteínas Ubiquitinadas/metabolismo , Diclorhidrato de trans-1,4-Bis(2-clorobenzaminometil)ciclohexanoRESUMEN
The accumulation of partially degraded lipid waste in lysosomal-related organelles may contribute to pathology in many aging diseases. The presence of these lipofuscin granules is particularly evident in the autofluorescent lysosome-associated organelles of the retinal pigmented epithelial (RPE) cells, and may be related to early stages of age-related macular degeneration. While lysosomal enzymes degrade material optimally at acidic pH levels, lysosomal pH is elevated in RPE cells from the ABCA4-/- mouse model of Stargardt's disease, an early onset retinal degeneration. Lowering lysosomal pH through cAMP-dependent pathways decreases accumulation of autofluorescent material in RPE cells in vitro, but identification of an appropriate receptor is crucial for manipulating this pathway in vivo. As the P2Y12 receptor for ADP is coupled to the inhibitory Gi protein, we asked whether blocking the P2Y12 receptor with ticagrelor could restore lysosomal acidity and reduce autofluorescence in compromised RPE cells from ABCA4-/- mice. Oral delivery of ticagrelor giving rise to clinically relevant exposure lowered lysosomal pH in these RPE cells. Ticagrelor also partially reduced autofluorescence in the RPE cells of ABCA4-/- mice. In vitro studies in ARPE-19 cells using more specific antagonists AR-C69931 and AR-C66096 confirmed the importance of the P2Y12 receptor for lowering lysosomal pH and reducing autofluorescence. These observations identify P2Y12 receptor blockade as a potential target to lower lysosomal pH and clear lysosomal waste in RPE cells.
RESUMEN
Cross-reactions between innate immunity, lysosomal function, and purinergic pathways may link signaling systems in cellular pathologies. We found activation of toll-like receptor 3 (TLR3) triggers lysosomal ATP release from both astrocytes and retinal pigmented epithelial (RPE) cells. ATP efflux was accompanied by lysosomal acid phosphatase and beta hexosaminidase release. Poly(I:C) alkalinized lysosomes, and lysosomal alkalization with bafilomycin or chloroquine triggered ATP release. Lysosomal rupture with glycyl-L-phenylalanine-2-naphthylamide (GPN) eliminated both ATP and acid phosphatase release. Secretory lysosome marker LAMP3 colocalized with VNUT, while MANT-ATP colocalized with LysoTracker. Unmodified membrane-impermeant 21-nt and "non-targeting" scrambled 21-nt siRNA triggered ATP and acid phosphatase release, while smaller 16-nt RNA was ineffective. Poly(I:C)-dependent ATP release was reduced by TBK-1 block and in TRPML1-/- cells, while TRPML activation with ML-SA1 was sufficient to release both ATP and acid phosphatase. The ability of poly(I:C) to raise cytoplasmic Ca2+ was abolished by removing extracellular ATP with apyrase, suggesting ATP release by poly(I:C) increased cellular signaling. Starvation but not rapamycin prevented lysosomal ATP release. In summary, stimulation of TLR3 triggers lysosomal alkalization and release of lysosomal ATP through activation of TRPML1; this links innate immunity to purinergic signaling via lysosomal physiology, and suggests even scrambled siRNA can influence these pathways.