Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Antioxidants (Basel) ; 13(4)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38671863

RESUMEN

D-galactose has been widely used as an inducer of cellular senescence and pathophysiological processes related to aging because it induces oxidative stress. On the other hand, the consumption of antioxidants such as curcumin can be an effective strategy to prevent phenotypes related to the enhanced production of reactive oxygen species (ROS), such as aging and senescence. This study aimed to evaluate the potential protective effect of curcumin on senescence and oxidative stress and endoplasmic reticulum stress induced by D-galactose treatment in Lilly Laboratories Culture-Porcine Kidney 1 (LLC-PK1) and human kidney 2 (HK-2) proximal tubule cell lines from pig and human, respectively. For senescence induction, cells were treated with 300 mM D-galactose for 120 h and, to evaluate the protective effect of the antioxidant, cells were treated with 5 µM curcumin for 24 h and subsequently treated with curcumin + D-galactose for 120 h. In LLC-PK1 cells, curcumin treatment decreased by 20% the number of cells positive for senescence-associated (SA)-ß-D-galactosidase staining and by 25% the expression of 8-hydroxy-2'-deoxyguanosine (8-OHdG) and increased by 40% lamin B1 expression. In HK-2 cells, curcumin treatment increased by 60% the expression of proliferating cell nuclear antigen (PCNA, 50% Klotho levels, and 175% catalase activity. In both cell lines, this antioxidant decreased the production of ROS (20% decrease for LLC-PK1 and 10 to 20% for HK-2). These data suggest that curcumin treatment has a moderate protective effect on D-galactose-induced senescence in LLC-PK1 and HK-2 cells.

2.
J Biochem Mol Toxicol ; 37(12): e23492, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37561086

RESUMEN

Cisplatin (CP) is a chemotherapeutic drug used to treat solid tumors. However, studies have revealed its nephrotoxic effect. Oxidative stress, endoplasmic reticulum (ER) stress, and mitochondrial dysfunction are involved in CP-induced renal damage. Thus, preconditioning (hormetic effect) of ER stress is a strategy to prevent CP-induced renal damage. On the other hand, isoliquiritigenin (IsoLQ) is recognized as a flavonoid with antioxidant properties and an inducer of ER stress. Therefore, we evaluated the ER stress-inducing capacity of IsoLQ and its possible protective effect against CP-induced nephrotoxicity in adult male Wistar rats. The findings reflected that IsoLQ pretreatment might decrease renal damage by reducing plasma creatinine and blood urea nitrogen levels in animals with CP-induced nephrotoxicity. These may be associated with IsoLQ activating ER stress and unfolded protein response (UPR). We found increased messenger RNA levels of the ER stress marker glucose-related protein 78 kDa (GRP78). In addition, we also found that pretreatment with IsoLQ reduced the levels of CCAAT/enhancer-binding protein-homologous protein (CHOP) and X-box-binding protein 1 (XBP1) in the renal cortex, reflecting that IsoLQ can regulate the UPR and activation of the apoptotic pathway. Moreover, this preconditioning with IsoLQ of ER stress had oxidative stress-regulatory effects, as it restored the activity of glutathione peroxidase and glutathione reductase enzymes. Finally, IsoLQ modifies the protein expression of mitofusin 2 (Mfn-2) and voltage-dependent anion channel (VDAC). In conclusion, these data suggest that IsoLQ pretreatment has a nephroprotective effect; it could functionally regulate the ER and mitochondria and reduce CP-induced renal damage by attenuating hormesis-mediated ER stress.


Asunto(s)
Apoptosis , Cisplatino , Ratas , Animales , Masculino , Cisplatino/toxicidad , Ratas Wistar , Riñón , Estrés Oxidativo , Estrés del Retículo Endoplásmico
3.
Antibiotics (Basel) ; 12(2)2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36830236

RESUMEN

Urinary tract infections (UTIs) are the most common infectious diseases worldwide. These infections are common in all people; however, they are more prevalent in women than in men. The main microorganism that causes 80-90% of UTIs is Escherichia coli. However, other bacteria such as Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa, Proteus mirabilis, and Klebsiella pneumoniae cause UTIs, and antibiotics are required to treat them. However, UTI treatment can be complicated by antibiotic resistance and biofilm formation. Therefore, medicinal plants, such as spices generally added to foods, can be a therapeutic alternative due to the variety of phytochemicals such as polyphenols, saponins, alkaloids, and terpenes present in their extracts that exert antimicrobial activity. Essential oils extracted from spices have been used to demonstrate their antimicrobial efficacy against strains of pathogens isolated from UTI patients and their synergistic effect with antibiotics. This article summarizes relevant findings on the antimicrobial activity of cinnamon, clove, cumin, oregano, pepper, and rosemary, spices popularly used in Mexico against the uropathogens responsible for UTIs.

4.
Vitam Horm ; 121: 169-196, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36707134

RESUMEN

The endoplasmic reticulum (ER) is a complex multifunctional organelle that maintains cell homeostasis. Intrinsic and extrinsic factors alter ER functions, including the rate of protein folding that triggers the accumulation of misfolded proteins and alters homeostasis, thus generating stress in the ER, which activates the unfolded protein response (UPR) pathway to promote cell survival and restore their homeostasis; however, if the damage is not corrected, it could also trigger cell death. In addition, ER stress and oxidative stress are closely related because excessive production of reactive oxygen species (ROS), a well-known inducer of ER stress, promotes the accumulation of misfolded proteins; at the same time, the ER stress enhances ROS production, generating a pathological cycle. Furthermore, it has been described that the dysregulation of the UPR contributes to the progression of various diseases, so the use of compounds capable of regulating ER stress, such as antioxidants, has been used in several experimental models of diseases to alleviate the damage induced by the maladaptive signaling of the UPR, the mechanism of action of antioxidants generally is dose-dependent, and it is specific in each tissue and pathology, could decrease or enhance specific proteins of the UPR to have beneficial or detrimental effects.


Asunto(s)
Antioxidantes , Estrés del Retículo Endoplásmico , Humanos , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Respuesta de Proteína Desplegada , Retículo Endoplásmico/metabolismo
5.
Cell Signal ; 87: 110123, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34438016

RESUMEN

The fibrotic process could be easily defined as a pathological excess of extracellular matrix deposition, leading to disruption of tissue architecture and eventually loss of function; however, this process involves a complex network of several signal transduction pathways. Virtually almost all organs could be affected by fibrosis, the most affected are the liver, lung, skin, kidney, heart, and eyes; in all of them, the transforming growth factor-beta (TGF-ß) has a central role. The canonical and non-canonical signal pathways of TGF-ß impact the fibrotic process at the cellular and molecular levels, inducing the epithelial-mesenchymal transition (EMT) and the induction of profibrotic gene expression with the consequent increase in proteins such as alpha-smooth actin (α-SMA), fibronectin, collagen, and other extracellular matrix proteins. Recently, it has been reported that some molecules that have not been typically associated with the fibrotic process, such as nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4 (NOX4), mammalian target of rapamycin (mTOR), histone deacetylases (HDAC), and sphingosine-1 phosphate (S1P); are critical in its development. In this review, we describe and discuss the role of these new players of fibrosis and the convergence with TGF-ß signaling pathways, unveiling new insights into the panorama of fibrosis that could be useful for future therapeutic targets.


Asunto(s)
Esfingosina , Factor de Crecimiento Transformador beta , Fibrosis , Amigos , Histona Desacetilasas , Humanos , NADPH Oxidasa 4 , Esfingosina/metabolismo , Serina-Treonina Quinasas TOR , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo
6.
Molecules ; 25(19)2020 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-32992605

RESUMEN

Isoliquiritigenin (IsoLQ) is a flavonoid with antioxidant properties and inducer of endoplasmic reticulum (ER) stress. In vitro and in vivo studies show that ER stress-mediated hormesis is cytoprotective; therefore, natural antioxidants and ER stress inducers have been used to prevent renal injury. Oxidative stress and ER stress are some of the mechanisms of damage involved in cisplatin (CP)-induced nephrotoxicity. This study aims to explore whether IsoLQ pretreatment induces ER stress and produces hormesis to protect against CP-induced nephrotoxicity in Lilly Laboratories Cell-Porcine Kidney 1 (LLC-PK1) cells. During the first stage of this study, both IsoLQ protective concentration and pretreatment time against CP-induced toxicity were determined by cell viability. At the second stage, the effect of IsoLQ pretreatment on cell viability, ER stress, and oxidative stress were evaluated. IsoLQ pretreatment in CP-treated cells induces expression of glucose-related proteins 78 and 94 kDa (GRP78 and GRP94, respectively), attenuates CP-induced cell death, decreases reactive oxygen species (ROS) production, and prevents the decrease in glutathione/glutathione disulfide (GSH/GSSG) ratio, free thiols levels, and glutathione reductase (GR) activity. These data suggest that IsoLQ pretreatment has a moderately protective effect on CP-induced toxicity in LLC-PK1 cells, through ER stress-mediated hormesis, as well as by the antioxidant properties of IsoLQ.


Asunto(s)
Chalconas/farmacología , Cisplatino/efectos adversos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Hormesis/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Animales , Cisplatino/farmacología , Células LLC-PK1 , Porcinos
7.
Biofactors ; 46(5): 716-733, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32905648

RESUMEN

Obstructive nephropathy favors the progression to chronic kidney disease (CKD), a severe health problem worldwide. The unilateral ureteral obstruction (UUO) model is used to study the development of fibrosis. Impairment of renal mitochondria plays a crucial role in several types of CKD and has been strongly related to fibrosis onset. Nevertheless, in the UUO model, the impairment of mitochondria, their relationship with endoplasmic reticulum (ER) stress induction and the participation of both to induce the fibrotic process remain unclear. In this review, we summarize the current information about mitochondrial bioenergetics, redox dynamics, mitochondrial mass, and biogenesis alterations, as well as the relationship of these mitochondrial alterations with ER stress and their participation in fibrotic processes in UUO models. Early after obstruction, there is metabolic reprogramming related to mitochondrial fatty acid ß-oxidation impairment, triggering lipid deposition, oxidative stress, (calcium) Ca2+ dysregulation, and a reduction in mitochondrial mass and biogenesis. Mitochondria and the ER establish a pathological feedback loop that promotes the impairment of both organelles by ER stress pathways and Ca2+ levels dysregulation. Preserving mitochondrial and ER function can prevent or at least delay the fibrotic process and loss of renal function. However, deeper understanding is still necessary for future clinically-useful therapies.


Asunto(s)
Fibrosis/genética , Mitocondrias/genética , Insuficiencia Renal Crónica/genética , Obstrucción Ureteral/genética , Señalización del Calcio/genética , Reprogramación Celular/genética , Estrés del Retículo Endoplásmico/genética , Fibrosis/metabolismo , Fibrosis/patología , Humanos , Mitocondrias/patología , Biogénesis de Organelos , Oxidación-Reducción , Insuficiencia Renal Crónica/metabolismo , Insuficiencia Renal Crónica/patología , Obstrucción Ureteral/metabolismo , Obstrucción Ureteral/patología
8.
Food Chem Toxicol ; 138: 111229, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32105807

RESUMEN

Endoplasmic reticulum (ER) stress is a normal molecular process induced by the over-accumulation of misfolded or unfolded proteins. ER stress induces the unfolded protein response (UPR), which reduces global protein synthesis, increases ER capacity and protein degradation, to restart ER homeostasis, allowing cell survival. However, the over-induction of UPR can also trigger inflammatory processes, tissue damage and cell death. ER stress is involved in several pathologies, like endothelial dysfunction, diabetes and heart, liver, kidney or neurological diseases. Although the progression of these diseases is the result of several pathological mechanisms, oxidative stress has been widely related to these pathologies. Moreover, ER stress can establish a progressive pathological cycle with oxidative stress. Therefore, the use of natural antioxidants, able to modulate both oxidative and ER stress, can be a new strategy to mitigate these diseases. This review is focused on the effects of natural antioxidant compounds on ER stress in endothelial dysfunction, diabetes and heart, liver, kidney or neurological diseases.


Asunto(s)
Antioxidantes/farmacología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/efectos de los fármacos , Respuesta de Proteína Desplegada/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Homeostasis , Humanos , Transducción de Señal/efectos de los fármacos
9.
Food Chem Toxicol ; 120: 230-242, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29990577

RESUMEN

Cancer is a relevant public health problem that represents the second leading cause of global death. In this regard, cisplatin is a highly effective antineoplastic drug used in treatment of several types of cancer, such as head and neck, testicular, ovarian, gastric, lung and breast cancer. Nevertheless, treatment with this compound leads to nephrotoxicity, which limits its use. Oxidative stress plays a pivotal role in cisplatin-induced renal damage and several dietary antioxidants have been reported to ameliorate this secondary effect. Relevant findings on the protective effects of these antioxidant agents in cisplatin-induced nephrotoxicity are summarized in this paper. Further, limitations of animal models used in these studies are discussed. Additionally, clinical studies on the protective effect of these antioxidants, as well as future directions for these kind of trials are also considered.


Asunto(s)
Antineoplásicos/toxicidad , Antioxidantes/farmacología , Cisplatino/toxicidad , Alimentos , Riñón/efectos de los fármacos , Animales , Sinergismo Farmacológico , Humanos , Riñón/metabolismo , Estrés Oxidativo/efectos de los fármacos
10.
J Pharm Pharmacol ; 66(9): 1271-81, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24779924

RESUMEN

OBJECTIVES: Cisplatin (CP) is an antineoplastic agent that induces nephrotoxicity and oxidative stress. S-allylcysteine (SAC) is a garlic-derived antioxidant. This study aims to explore whether SAC protects against CP-induced nephrotoxicity in rats. METHODS: In the first stage, the SAC protective dose was determined by measuring renal damage and the oxidative stress markers malondialdehyde, oxidized proteins and glutathione in rats injected with CP. In the second stage, the effect of a single dose of SAC on the expression of nuclear factor-erythroid 2-related factor-2 (Nrf2), protein kinase C beta 2 (PKCß2) and nicotinamide adenine dinucleotide phosphate oxidase subunits (p47(phox) and gp91(phox) ) was studied. In addition, the effect of SAC on oxidative stress markers and on the activity of catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GR) in isolated proximal and distal tubules were evaluated. KEY FINDINGS: SAC (25 mg/kg) prevented the CP-induced renal damage and attenuated CP-induced decrease in Nrf2 levels and increase in PKCß2, p47(phox) and gp91(phox) expression in renal cortex and oxidative stress and decrease in the activity of CAT, GPx and GR in proximal and distal tubules. CONCLUSIONS: These data suggest that SAC provides renoprotection by attenuating CP-induced oxidative stress and decrease in the activity of CAT, GPx and GR.


Asunto(s)
Antioxidantes/uso terapéutico , Cisplatino/efectos adversos , Cisteína/análogos & derivados , Ajo/química , Enfermedades Renales/prevención & control , Riñón/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Animales , Antineoplásicos/efectos adversos , Antioxidantes/metabolismo , Antioxidantes/farmacología , Catalasa/metabolismo , Cisplatino/uso terapéutico , Cisteína/farmacología , Cisteína/uso terapéutico , Glutatión Peroxidasa/metabolismo , Glutatión Reductasa/metabolismo , Riñón/metabolismo , Enfermedades Renales/metabolismo , Masculino , Malondialdehído/metabolismo , Glicoproteínas de Membrana/metabolismo , NADPH Oxidasa 2 , NADPH Oxidasas/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Fitoterapia , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Proteína Quinasa C beta/metabolismo , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...