Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; : 107590, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39032649

RESUMEN

The human tumor suppressor p16INK4a is a small monomeric protein that can form amyloid structures. Formation of p16INK4a amyloid fibrils is induced by oxidation which creates an intermolecular disulfide bond. The conversion into amyloid is associated with a change from an all α-helical structure into ß-sheet fibrils. Currently, structural insights into p16INK4a amyloid fibrils are lacking. Here, we investigate the amyloid-forming regions of this tumor suppressor using isotope-labeling limited-digestion mass spectrometry analysis. We discover two key regions that likely form the structured core of the amyloid. Further investigations using thioflavin-T fluorescence assays, electron microscopy and solution nuclear magnetic resonance spectroscopy of shorter peptide regions confirm the self-assembly of the identified sequences that include methionine and leucine repeat regions. This work describes a simple approach for studying protein motifs involved in the conversion of monomeric species into aggregated fibril structures. It provides first insights into the polypeptide sequence underlying the core structure of amyloid p16INK4a formed after a unique oxidation-driven structural transition.

2.
Nat Commun ; 15(1): 5535, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951545

RESUMEN

The conversion of a soluble protein into polymeric amyloid structures is a process that is poorly understood. Here, we describe a fully redox-regulated amyloid system in which cysteine oxidation of the tumor suppressor protein p16INK4a leads to rapid amyloid formation. We identify a partially-structured disulfide-bonded dimeric intermediate species that subsequently assembles into fibrils. The stable amyloid structures disassemble when the disulfide bond is reduced. p16INK4a is frequently mutated in cancers and is considered highly vulnerable to single-point mutations. We find that multiple cancer-related mutations show increased amyloid formation propensity whereas mutations stabilizing the fold prevent transition into amyloid. The complex transition into amyloids and their structural stability is therefore strictly governed by redox reactions and a single regulatory disulfide bond.


Asunto(s)
Amiloide , Inhibidor p16 de la Quinasa Dependiente de Ciclina , Cisteína , Oxidación-Reducción , Amiloide/metabolismo , Amiloide/química , Humanos , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Cisteína/metabolismo , Cisteína/química , Disulfuros/metabolismo , Disulfuros/química , Compuestos de Sulfhidrilo/metabolismo , Compuestos de Sulfhidrilo/química , Mutación , Polimerizacion
3.
Biophys Chem ; 298: 107040, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37229877

RESUMEN

Bacterial plasmids and chromosomes widely contain toxin-antitoxin (TA) loci, which are implicated in stress response, growth regulation and even tolerance to antibiotics and environmental stress. Type I TA systems consist of a stable toxin-expressing mRNA, which is counteracted by an unstable RNA antitoxin. The Long Direct Repeat (LDR-) D locus, a type I TA system of Escherichia Coli (E. coli) K12, encodes a 35 amino acid toxic peptide, LdrD. Despite being characterized as a bacterial toxin, causing rapid killing and nucleoid condensation, little was known about its function and its mechanism of toxicity. Here, we show that LdrD specifically interacts with ribosomes which potentially blocks translation. Indeed, in vitro translation of LdrD-coding mRNA greatly reduces translation efficiency. The structure of LdrD in a hydrophobic environment, similar to the one found in the interior of ribosomes was determined by NMR spectroscopy in 100% trifluoroethanol solution. A single compact α-helix was found which would fit nicely into the ribosomal exit tunnel. Therefore, we conclude that rather than destroying bacterial membranes, LdrD exerts its toxic activity by inhibiting protein synthesis through binding to the ribosomes.


Asunto(s)
Antitoxinas , Toxinas Bacterianas , Escherichia coli/genética , Escherichia coli/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Secuencias Repetitivas de Ácidos Nucleicos , Biosíntesis de Proteínas , Antitoxinas/química , Antitoxinas/genética , Antitoxinas/metabolismo , Proteínas Bacterianas/química
4.
J Biol Chem ; 299(6): 104792, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37150321

RESUMEN

Necroptosis is a form of regulated cell death triggered by various host and pathogen-derived molecules during infection and inflammation. The essential step leading to necroptosis is phosphorylation of the mixed lineage kinase domain-like protein by receptor-interacting protein kinase 3. Caspase-8 cleaves receptor-interacting protein kinases to block necroptosis, so synthetic caspase inhibitors are required to study this process in experimental models. However, it is unclear how caspase-8 activity is regulated in a physiological setting. The active site cysteine of caspases is sensitive to oxidative inactivation, so we hypothesized that oxidants generated at sites of inflammation can inhibit caspase-8 and promote necroptosis. Here, we discovered that hypothiocyanous acid (HOSCN), an oxidant generated in vivo by heme peroxidases including myeloperoxidase and lactoperoxidase, is a potent caspase-8 inhibitor. We found HOSCN was able to promote necroptosis in mouse fibroblasts treated with tumor necrosis factor. We also demonstrate purified caspase-8 was inactivated by low concentrations of HOSCN, with the predominant product being a disulfide-linked dimer between Cys360 and Cys409 of the large and small catalytic subunits. We show oxidation still occurred in the presence of reducing agents, and reduction of the dimer was slow, consistent with HOSCN being a powerful physiological caspase inhibitor. While the initial oxidation product is a dimer, further modification also occurred in cells treated with HOSCN, leading to higher molecular weight caspase-8 species. Taken together, these findings indicate major disruption of caspase-8 function and suggest a novel mechanism for the promotion of necroptosis at sites of inflammation.


Asunto(s)
Caspasa 8 , Necroptosis , Oxidantes , Factores de Necrosis Tumoral , Animales , Ratones , Caspasa 8/química , Caspasa 8/metabolismo , Inflamación/metabolismo , Necroptosis/efectos de los fármacos , Oxidantes/metabolismo , Oxidantes/farmacología , Oxidación-Reducción/efectos de los fármacos , Factores de Necrosis Tumoral/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/enzimología , Fibroblastos/metabolismo , Peroxidasa , Lactoperoxidasa , Dominio Catalítico
5.
Cell Death Differ ; 30(2): 407-416, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36528755

RESUMEN

Experimental autoimmune encephalomyelitis (EAE) is a mouse model of multiple sclerosis (MS) in which Th17 cells have a crucial but unclear function. Here we show that choline acetyltransferase (ChAT), which synthesizes acetylcholine (ACh), is a critical driver of pathogenicity in EAE. Mice with ChAT-deficient Th17 cells resist disease progression and show reduced brain-infiltrating immune cells. ChAT expression in Th17 cells is linked to strong TCR signaling, expression of the transcription factor Bhlhe40, and increased Il2, Il17, Il22, and Il23r mRNA levels. ChAT expression in Th17 cells is independent of IL21r signaling but dampened by TGFß, implicating ChAT in controlling the dichotomous nature of Th17 cells. Our study establishes a cholinergic program in which ACh signaling primes chronic activation of Th17 cells, and thereby constitutes a pathogenic determinant of EAE. Our work may point to novel targets for therapeutic immunomodulation in MS.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Ratones , Animales , Células Th17 , Virulencia , Colinérgicos , Esclerosis Múltiple/genética , Acetilcolina/metabolismo , Ratones Endogámicos C57BL , Diferenciación Celular
6.
J Biol Chem ; 297(4): 101167, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34487759

RESUMEN

ToxR represents an essential transcription factor of Vibrio cholerae, which is involved in the regulation of multiple, mainly virulence associated genes. Its versatile functionality as activator, repressor or coactivator suggests a complex regulatory mechanism, whose clarification is essential for a better understanding of the virulence expression system of V. cholerae. Here, we provide structural information elucidating the organization and binding behavior of the cytoplasmic DNA-binding domain of ToxR (cToxR), containing a winged helix-turn-helix (wHTH) motif. Our analysis reveals unexpected structural features of this domain expanding our knowledge of a poorly defined subfamily of wHTH proteins. cToxR forms an extraordinary long α-loop and furthermore has an additional C-terminal beta strand, contacting the N-terminus and thus leading to a compact fold. The identification of the exact interactions between ToxR and DNA contributes to a deeper understanding of this regulatory process. Our findings not only show general binding of the soluble cytoplasmic domain of ToxR to DNA, but also indicate a higher affinity for the toxT motif. These results support the current theory of ToxR being a "DNA-catcher" to enable binding of the transcription factor TcpP and thus activation of virulence-associated toxT transcription. Although, TcpP and ToxR interaction is assumed to be crucial in the activation of the toxT genes, we could not detect an interaction event of their isolated cytoplasmic domains. We therefore conclude that other factors are needed to establish this protein-protein interaction, e.g., membrane attachment, the presence of their full-length proteins and/or other intermediary proteins that may facilitate binding.


Asunto(s)
Proteínas Bacterianas/química , Proteínas de Unión al ADN/química , Factores de Transcripción/química , Vibrio cholerae/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Secuencias Hélice-Giro-Hélice , Dominios Proteicos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética , Vibrio cholerae/genética , Vibrio cholerae/metabolismo
7.
Biochem J ; 478(17): 3319-3330, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34424335

RESUMEN

Angiotensinogen fine-tunes the tightly controlled activity of the renin-angiotensin system by modulating the release of angiotensin peptides that control blood pressure. One mechanism by which this modulation is achieved is via angiotensinogen's Cys18-Cys138 disulfide bond that acts as a redox switch. Molecular dynamics simulations of each redox state of angiotensinogen reveal subtle dynamic differences between the reduced and oxidised forms, particularly at the N-terminus. Surface plasmon resonance data demonstrate that the two redox forms of angiotensinogen display different binding kinetics to an immobilised anti-angiotensinogen monoclonal antibody. Mass spectrometry mapped the epitope for the antibody to the N-terminal region of angiotensinogen. We therefore provide evidence that the different redox forms of angiotensinogen can be detected by an antibody-based detection method.


Asunto(s)
Angiotensinógeno/química , Angiotensinógeno/metabolismo , Simulación de Dinámica Molecular , Resonancia por Plasmón de Superficie/métodos , Angiotensinógeno/genética , Angiotensinógeno/inmunología , Anticuerpos Monoclonales/inmunología , Presión Sanguínea/fisiología , Cisteína/metabolismo , Disulfuros/metabolismo , Epítopos/inmunología , Humanos , Cinética , Oxidación-Reducción , Unión Proteica , Conformación Proteica en Hélice alfa , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Sistema Renina-Angiotensina/fisiología
8.
J Biol Chem ; 296: 100494, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33667550

RESUMEN

Peroxiredoxin 2 (Prdx2) is a thiol peroxidase with an active site Cys (C52) that reacts rapidly with H2O2 and other peroxides. The sulfenic acid product condenses with the resolving Cys (C172) to form a disulfide which is recycled by thioredoxin or GSH via mixed disulfide intermediates or undergoes hyperoxidation to the sulfinic acid. C172 lies near the C terminus, outside the active site. It is not established whether structural changes in this region, such as mixed disulfide formation, affect H2O2 reactivity. To investigate, we designed mutants to cause minimal (C172S) or substantial (C172D and C172W) structural disruption. Stopped flow kinetics and mass spectrometry showed that mutation to Ser had minimal effect on rates of oxidation and hyperoxidation, whereas Asp and Trp decreased both by ∼100-fold. To relate to structural changes, we solved the crystal structures of reduced WT and C172S Prdx2. The WT structure is highly similar to that of the published hyperoxidized form. C172S is closely related but more flexible and as demonstrated by size exclusion chromatography and analytical ultracentrifugation, a weaker decamer. Size exclusion chromatography and analytical ultracentrifugation showed that the C172D and C172W mutants are also weaker decamers than WT, and small-angle X-ray scattering analysis indicated greater flexibility with partially unstructured regions consistent with C-terminal unfolding. We propose that these structural changes around C172 negatively impact the active site geometry to decrease reactivity with H2O2. This is relevant for Prdx turnover as intermediate mixed disulfides with C172 would also be disruptive and could potentially react with peroxides before resolution is complete.


Asunto(s)
Cisteína/química , Cisteína/metabolismo , Peróxido de Hidrógeno/metabolismo , Peroxirredoxinas/química , Peroxirredoxinas/metabolismo , Secuencia de Aminoácidos , Dominio Catalítico , Cristalografía por Rayos X , Humanos , Peróxido de Hidrógeno/química , Mutación , Oxidantes/química , Oxidantes/metabolismo , Oxidación-Reducción , Relación Estructura-Actividad
9.
FEBS Lett ; 595(3): 324-340, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33156522

RESUMEN

Yeast impact homolog 1 (Yih1), or IMPACT in mammals, is part of a conserved regulatory module controlling the activity of General Control Nonderepressible 2 (Gcn2), a protein kinase that regulates protein synthesis. Yih1/IMPACT is implicated not only in many essential cellular processes, such as neuronal development, immune system regulation and the cell cycle, but also in cancer. Gcn2 must bind to Gcn1 in order to impair the initiation of protein translation. Yih1 hinders this key Gcn1-Gcn2 interaction by binding to Gcn1, thus preventing Gcn2-mediated inhibition of protein synthesis. Here, we solved the structures of the two domains of Saccharomyces cerevisiae Yih1 separately using Nuclear Magnetic Resonance and determined the relative positions of the two domains using a range of biophysical methods. Our findings support a compact structural model of Yih1 in which the residues required for Gcn1 binding are buried in the interface. This model strongly implies that Yih1 undergoes a large conformational rearrangement from a latent closed state to a primed open state to bind Gcn1. Our study provides structural insight into the interactions of Yih1 with partner molecules.


Asunto(s)
Proteínas de Microfilamentos/química , Proteínas Serina-Treonina Quinasas/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Secuencia de Aminoácidos , Animales , Sitios de Unión , Clonación Molecular , Medios de Contraste/química , Escherichia coli/genética , Escherichia coli/metabolismo , Gadolinio DTPA/química , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Ratones , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Modelos Moleculares , Mutación , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Termodinámica
10.
Proc Natl Acad Sci U S A ; 117(15): 8503-8514, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32234784

RESUMEN

The specific interaction of importins with nuclear localization signals (NLSs) of cargo proteins not only mediates nuclear import but also, prevents their aberrant phase separation and stress granule recruitment in the cytoplasm. The importin Transportin-1 (TNPO1) plays a key role in the (patho-)physiology of both processes. Here, we report that both TNPO1 and Transportin-3 (TNPO3) recognize two nonclassical NLSs within the cold-inducible RNA-binding protein (CIRBP). Our biophysical investigations show that TNPO1 recognizes an arginine-glycine(-glycine) (RG/RGG)-rich region, whereas TNPO3 recognizes a region rich in arginine-serine-tyrosine (RSY) residues. These interactions regulate nuclear localization, phase separation, and stress granule recruitment of CIRBP in cells. The presence of both RG/RGG and RSY regions in numerous other RNA-binding proteins suggests that the interaction of TNPO1 and TNPO3 with these nonclassical NLSs may regulate the formation of membraneless organelles and subcellular localization of numerous proteins.


Asunto(s)
Núcleo Celular/metabolismo , Señales de Localización Nuclear , Fragmentos de Péptidos/metabolismo , Proteínas de Unión al ARN/metabolismo , beta Carioferinas/metabolismo , Transporte Activo de Núcleo Celular , Arginina/química , Arginina/metabolismo , Citoplasma/metabolismo , Glicina/química , Glicina/metabolismo , Células HeLa , Humanos , Fragmentos de Péptidos/química , Unión Proteica , Conformación Proteica , Proteínas de Unión al ARN/química , Serina/química , Serina/metabolismo , Tirosina/química , Tirosina/metabolismo , beta Carioferinas/química
11.
Redox Biol ; 28: 101316, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31539802

RESUMEN

The tumor suppressor p16INK4A induces cell cycle arrest and senescence in response to oncogenic transformation and is therefore frequently lost in cancer. p16INK4A is also known to accumulate under conditions of oxidative stress. Thus, we hypothesized it could potentially be regulated by reversible oxidation of cysteines (redox signaling). Here we report that oxidation of the single cysteine in p16INK4A in human cells occurs under relatively mild oxidizing conditions and leads to disulfide-dependent dimerization. p16INK4A is an all α-helical protein, but we find that upon cysteine-dependent dimerization, p16INK4A undergoes a dramatic structural rearrangement and forms aggregates that have the typical features of amyloid fibrils, including binding of diagnostic dyes, presence of cross-ß sheet structure, and typical dimensions found in electron microscopy. p16INK4A amyloid formation abolishes its function as a Cyclin Dependent Kinase 4/6 inhibitor. Collectively, these observations mechanistically link the cellular redox state to the inactivation of p16INK4A through the formation of amyloid fibrils.


Asunto(s)
Inhibidor p16 de la Quinasa Dependiente de Ciclina/química , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Cisteína/química , Amiloide/química , Ciclo Celular , Senescencia Celular , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Células HEK293 , Humanos , Modelos Moleculares , Oxidación-Reducción , Multimerización de Proteína , Estructura Secundaria de Proteína
12.
J Biomol NMR ; 73(6-7): 305-317, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31297688

RESUMEN

In order to understand the conformational behavior of intrinsically disordered proteins (IDPs) and their biological interaction networks, the detection of residual structure and long-range interactions is required. However, the large number of degrees of conformational freedom of disordered proteins require the integration of extensive sets of experimental data, which are difficult to obtain. Here, we provide a straightforward approach for the detection of residual structure and long-range interactions in IDPs under near-native conditions using solvent paramagnetic relaxation enhancement (sPRE). Our data indicate that for the general case of an unfolded chain, with a local flexibility described by the overwhelming majority of available combinations, sPREs of non-exchangeable protons can be accurately predicted through an ensemble-based fragment approach. We show for the disordered protein α-synuclein and disordered regions of the proteins FOXO4 and p53 that deviation from random coil behavior can be interpreted in terms of intrinsic propensity to populate local structure in interaction sites of these proteins and to adopt transient long-range structure. The presented modification-free approach promises to be applicable to study conformational dynamics of IDPs and other dynamic biomolecules in an integrative approach.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/química , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Humanos , Conformación Proteica , Proteínas Recombinantes/química , Solventes/química
13.
Proc Natl Acad Sci U S A ; 116(9): 3604-3613, 2019 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-30733286

RESUMEN

Cancer cells have higher reactive oxygen species (ROS) than normal cells, due to genetic and metabolic alterations. An emerging scenario is that cancer cells increase ROS to activate protumorigenic signaling while activating antioxidant pathways to maintain redox homeostasis. Here we show that, in basal-like and BRCA1-related breast cancer (BC), ROS levels correlate with the expression and activity of the transcription factor aryl hydrocarbon receptor (AhR). Mechanistically, ROS triggers AhR nuclear accumulation and activation to promote the transcription of both antioxidant enzymes and the epidermal growth factor receptor (EGFR) ligand, amphiregulin (AREG). In a mouse model of BRCA1-related BC, cancer-associated AhR and AREG control tumor growth and production of chemokines to attract monocytes and activate proangiogenic function of macrophages in the tumor microenvironment. Interestingly, the expression of these chemokines as well as infiltration of monocyte-lineage cells (monocyte and macrophages) positively correlated with ROS levels in basal-like BC. These data support the existence of a coordinated link between cancer-intrinsic ROS regulation and the features of tumor microenvironment. Therapeutically, chemical inhibition of AhR activity sensitizes human BC models to Erlotinib, a selective EGFR tyrosine kinase inhibitor, suggesting a promising combinatorial anticancer effect of AhR and EGFR pathway inhibition. Thus, AhR represents an attractive target to inhibit redox homeostasis and modulate the tumor promoting microenvironment of basal-like and BRCA1-associated BC.


Asunto(s)
Anfirregulina/genética , Proteína BRCA1/genética , Neoplasias de la Mama/genética , Receptores de Hidrocarburo de Aril/genética , Adulto , Animales , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Receptores ErbB/genética , Clorhidrato de Erlotinib/administración & dosificación , Femenino , Regulación Neoplásica de la Expresión Génica , Homeostasis/genética , Humanos , Ratones , Persona de Mediana Edad , Oxidación-Reducción/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Microambiente Tumoral/genética
14.
J Mol Biol ; 430(24): 4925-4940, 2018 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-30414962

RESUMEN

The antibody light chain (LC) consists of two domains and is essential for antigen binding in mature immunoglobulins. The two domains are connected by a highly conserved linker that comprises the structurally important Arg108 residue. In antibody light chain (AL) amyloidosis, a severe protein amyloid disease, the LC and its N-terminal variable domain (VL) convert to fibrils deposited in the tissues causing organ failure. Understanding the factors shaping the architecture of the LC is important for basic science, biotechnology and for deciphering the principles that lead to fibril formation. In this study, we examined the structure and properties of LC variants with a mutated or extended linker. We show that under destabilizing conditions, the linker modulates the amyloidogenicity of the LC. The fibril formation propensity of LC linker variants and their susceptibility to proteolysis directly correlate implying an interplay between the two LC domains. Using NMR and residual dipolar coupling-based simulations, we found that the linker residue Arg108 is a key factor regulating the relative orientation of the VL and CL domains, keeping them in a bent and dense, but still flexible conformation. Thus, inter-domain contacts and the relative orientation of VL and CL to each other are of major importance for maintaining the structural integrity of the full-length LC.


Asunto(s)
Cadenas Ligeras de Inmunoglobulina/química , Cadenas Ligeras de Inmunoglobulina/metabolismo , Mutación , Agregación Patológica de Proteínas/metabolismo , Amiloide/química , Amiloide/genética , Amiloide/metabolismo , Arginina/metabolismo , Sitios de Unión , Humanos , Cadenas Ligeras de Inmunoglobulina/genética , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Dominios Proteicos , Proteolisis
15.
Sci Adv ; 4(6): eaaq1702, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29963623

RESUMEN

Amyloid-ß (Aß) aggregation and neuroinflammation are consistent features in Alzheimer's disease (AD) and strong candidates for the initiation of neurodegeneration. S100B is one of the most abundant proinflammatory proteins that is chronically up-regulated in AD and is found associated with senile plaques. This recognized biomarker for brain distress may, thus, play roles in amyloid aggregation which remain to be determined. We report a novel role for the neuronal S100B protein as suppressor of Aß42 aggregation and toxicity. We determined the structural details of the interaction between monomeric Aß42 and S100B, which is favored by calcium binding to S100B, possibly involving conformational switching of disordered Aß42 into an α-helical conformer, which locks aggregation. From nuclear magnetic resonance experiments, we show that this dynamic interaction occurs at a promiscuous peptide-binding region within the interfacial cleft of the S100B homodimer. This physical interaction is coupled to a functional role in the inhibition of Aß42 aggregation and toxicity and is tuned by calcium binding to S100B. S100B delays the onset of Aß42 aggregation by interacting with Aß42 monomers inhibiting primary nucleation, and the calcium-bound state substantially affects secondary nucleation by inhibiting fibril surface-catalyzed reactions through S100B binding to growing Aß42 oligomers and fibrils. S100B protects cells from Aß42-mediated toxicity, rescuing cell viability and decreasing apoptosis induced by Aß42 in cell cultures. Together, our findings suggest that molecular targeting of S100B could be translated into development of novel approaches to ameliorate AD neurodegeneration.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Amiloide/metabolismo , Calcio/metabolismo , Neuronas/metabolismo , Agregación Patológica de Proteínas/metabolismo , Subunidad beta de la Proteína de Unión al Calcio S100/metabolismo , Péptidos beta-Amiloides/química , Humanos , Modelos Biológicos , Modelos Moleculares , Agregado de Proteínas , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Transporte de Proteínas , Subunidad beta de la Proteína de Unión al Calcio S100/química , Relación Estructura-Actividad
17.
Sci Adv ; 3(3): e1602498, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28275738

RESUMEN

Nature has evolved an astonishingly modular architecture of covalently linked protein domains with diverse functionalities to enable complex cellular networks that are critical for cell survival. The coupling of sensory modules with enzymatic effectors allows direct allosteric regulation of cellular signaling molecules in response to diverse stimuli. We present molecular details of red light-sensing bacteriophytochromes linked to cyclic dimeric guanosine monophosphate-producing diguanylyl cyclases. Elucidation of the first crystal structure of a full-length phytochrome with its enzymatic effector, in combination with the characterization of light-induced changes in conformational dynamics, reveals how allosteric light regulation is fine-tuned by the architecture and composition of the coiled-coil sensor-effector linker and also the central helical spine. We anticipate that consideration of molecular principles of sensor-effector coupling, going beyond the length of the characteristic linker, and the appreciation of dynamically driven allostery will open up new directions for the design of novel red light-regulated optogenetic tools.


Asunto(s)
Alteromonadaceae/enzimología , Proteínas Bacterianas/química , Guanilato Ciclasa/química , Transducción de Señal , Regulación Alostérica , Alteromonadaceae/genética , Cristalografía por Rayos X , Luz , Dominios Proteicos
18.
Sci Rep ; 7: 44041, 2017 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-28287098

RESUMEN

Type II diabetes (T2D) is characterized by diminished insulin production and resistance of cells to insulin. Among others, endoplasmic reticulum (ER) stress is a principal factor contributing to T2D and induces a shift towards a more reducing cellular environment. At the same time, peripheral insulin resistance triggers the over-production of regulatory hormones such as insulin and human islet amyloid polypeptide (hIAPP). We show that the differential aggregation of reduced and oxidized hIAPP assists to maintain the redox equilibrium by restoring redox equivalents. Aggregation thus induces redox balancing which can assist initially to counteract ER stress. Failure of the protein degradation machinery might finally result in ß-cell disruption and cell death. We further present a structural characterization of hIAPP in solution, demonstrating that the N-terminus of the oxidized peptide has a high propensity to form an α-helical structure which is lacking in the reduced state of hIAPP. In healthy cells, this residual structure prevents the conversion into amyloidogenic aggregates.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Polipéptido Amiloide de los Islotes Pancreáticos/química , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Animales , Diabetes Mellitus Tipo 2/patología , Estrés del Retículo Endoplásmico , Femenino , Humanos , Ratones Endogámicos BALB C , Ratones Transgénicos , Oxidación-Reducción , Agregación Patológica de Proteínas , Conformación Proteica
19.
Angew Chem Int Ed Engl ; 55(47): 14847-14851, 2016 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-27763708

RESUMEN

The study of intrinsically disordered proteins (IDPs) by NMR often suffers from highly overlapped resonances that prevent unambiguous chemical-shift assignments, and data analysis that relies on well-separated resonances. We present a covalent paramagnetic lanthanide-binding tag (LBT) for increasing the chemical-shift dispersion and facilitating the chemical-shift assignment of challenging, repeat-containing IDPs. Linkage of the DOTA-based LBT to a cysteine residue induces pseudo-contact shifts (PCS) for resonances more than 20 residues from the spin-labeling site. This leads to increased chemical-shift dispersion and decreased signal overlap, thereby greatly facilitating chemical-shift assignment. This approach is applicable to IDPs of varying sizes and complexity, and is particularly helpful for repeat-containing IDPs and low-complexity regions. This results in improved efficiency for IDP analysis and binding studies.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/química , Elementos de la Serie de los Lantanoides/química , Espectroscopía de Resonancia Magnética
20.
J Biomol NMR ; 66(2): 125-139, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27659040

RESUMEN

Lanthanide complexes based on the DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) cage are commonly used as phase contrast agents in magnetic resonance imaging, but can also be utilized in structural NMR applications due to their ability to induce either paramagnetic relaxation enhancement or a pseudocontact shift (PCS) depending on the choice of the lanthanide. The size and sign of the PCS for any given atom is determined by its coordinates relative to the metal center, and the characteristics of the lanthanide's magnetic susceptibility tensor. Using a polymethylated DOTA tag (Ln-M8-SPy) conjugated to ubiquitin, we calculated the position of the metal center and characterized the susceptibility tensor for a number of lanthanides (dysprosium, thulium, and ytterbium) under a range of pH and temperature conditions. We found that there was a difference in temperature sensitivity for each of the complexes studied, which depended on the size of the lanthanide ion as well as the isomeric state of the cage. Using 17O-NMR, we confirmed that the temperature sensitivity of the compounds was enhanced by the presence of an apically bound water molecule. Since amide-containing lanthanide complexes are known to be pH sensitive and can be used as probes of physiological pH, we also investigated the effect of pH on the Ln-M8-SPy susceptibility tensor, but we found that the changes in this pH range (5.0-7.4) were not significant.


Asunto(s)
Compuestos Heterocíclicos con 1 Anillo/química , Elementos de la Serie de los Lantanoides/química , Espectroscopía de Resonancia Magnética , Concentración de Iones de Hidrógeno , Espectroscopía de Resonancia Magnética/métodos , Metales/química , Metilación , Modelos Moleculares , Conformación Molecular , Estructura Molecular , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...