Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 42(11): 113277, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37864791

RESUMEN

Sensing of human immunodeficiency virus type 1 (HIV-1) DNA is mediated by the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) signaling axis. Signal transduction and regulation of this cascade is achieved by post-translational modifications. Here we show that cGAS-STING-dependent HIV-1 sensing requires interferon-stimulated gene 15 (ISG15). ISG15 deficiency inhibits STING-dependent sensing of HIV-1 and STING agonist-induced antiviral response. Upon external stimuli, STING undergoes ISGylation at residues K224, K236, K289, K347, K338, and K370. Inhibition of STING ISGylation at K289 suppresses STING-mediated type Ⅰ interferon induction by inhibiting its oligomerization. Of note, removal of STING ISGylation alleviates gain-of-function phenotype in STING-associated vasculopathy with onset in infancy (SAVI). Molecular modeling suggests that ISGylation of K289 is an important regulator of oligomerization. Taken together, our data demonstrate that ISGylation at K289 is crucial for STING activation and represents an important regulatory step in DNA sensing of viruses and autoimmune responses.


Asunto(s)
ADN , Interferón Tipo I , Humanos , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Transducción de Señal/genética , Inmunidad Innata , Ubiquitinas , Citocinas
2.
Immunity ; 56(7): 1578-1595.e8, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37329888

RESUMEN

It is currently not well known how necroptosis and necroptosis responses manifest in vivo. Here, we uncovered a molecular switch facilitating reprogramming between two alternative modes of necroptosis signaling in hepatocytes, fundamentally affecting immune responses and hepatocarcinogenesis. Concomitant necrosome and NF-κB activation in hepatocytes, which physiologically express low concentrations of receptor-interacting kinase 3 (RIPK3), did not lead to immediate cell death but forced them into a prolonged "sublethal" state with leaky membranes, functioning as secretory cells that released specific chemokines including CCL20 and MCP-1. This triggered hepatic cell proliferation as well as activation of procarcinogenic monocyte-derived macrophage cell clusters, contributing to hepatocarcinogenesis. In contrast, necrosome activation in hepatocytes with inactive NF-κB-signaling caused an accelerated execution of necroptosis, limiting alarmin release, and thereby preventing inflammation and hepatocarcinogenesis. Consistently, intratumoral NF-κB-necroptosis signatures were associated with poor prognosis in human hepatocarcinogenesis. Therefore, pharmacological reprogramming between these distinct forms of necroptosis may represent a promising strategy against hepatocellular carcinoma.


Asunto(s)
Neoplasias Hepáticas , FN-kappa B , Humanos , FN-kappa B/metabolismo , Proteínas Quinasas/metabolismo , Necroptosis , Inflamación/patología , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Apoptosis
3.
Cell Mol Gastroenterol Hepatol ; 14(6): 1199-1211, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35973573

RESUMEN

BACKGROUND & AIMS: The 2-pore potassium channel subfamily K member 9 (KCNK9) regulates intracellular calcium concentration and thus modulates cell survival and inflammatory signaling pathways. It also was recognized as a risk allele for inflammatory bowel disease. However, it remains unclear whether KCNK9 modulates inflammatory bowel disease via its impact on immune cell function or whether its influence on calcium homeostasis also is relevant in intestinal epithelial cells. METHODS: Kcnk9-/- mice were challenged with 3% dextran sulfate sodium (DSS) to induce experimental acute colitis. Primary cultures of intestinal epithelial cells were generated, and expression of potassium channels as well as cytosolic calcium levels and susceptibility to apoptosis were evaluated. Furthermore, we evaluated whether KCNK9 deficiency was compensated by the closely related 2-pore potassium channel KCNK3 in vivo or in vitro. RESULTS: Compared with controls, KCNK9 deficiency or its pharmacologic blockade were associated with aggravated DSS-induced colitis compared with wild-type animals. In the absence of KCNK9, intestinal epithelial cells showed increased intracellular calcium levels and were more prone to mitochondrial damage and caspase-9-dependent apoptosis. We found that expression of KCNK3 was increased in Kcnk9-/- mice but did not prevent apoptosis after DSS exposure. Conversely, increased levels of KCNK9 in Kcnk3-/- mice were associated with an ameliorated course of DSS-induced colitis. CONCLUSIONS: KCNK9 enhances mitochondrial stability, reduces apoptosis, und thus supports epithelial cell survival after DSS exposure in vivo and in vitro. Conversely, its increased expression in Kcnk3-/- resulted in less mitochondrial damage and apoptosis and was associated with beneficial outcomes in DSS-induced colitis.


Asunto(s)
Colitis , Canales de Potasio , Animales , Ratones , Calcio/metabolismo , Supervivencia Celular , Colitis/inducido químicamente , Colitis/genética , Células Epiteliales , Canales de Potasio/genética , Ratones Noqueados , Sulfato de Dextran
4.
Nat Rev Dis Primers ; 8(1): 43, 2022 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-35739133

RESUMEN

Hepatic encephalopathy (HE) is a prognostically relevant neuropsychiatric syndrome that occurs in the course of acute or chronic liver disease. Besides ascites and variceal bleeding, it is the most serious complication of decompensated liver cirrhosis. Ammonia and inflammation are major triggers for the appearance of HE, which in patients with liver cirrhosis involves pathophysiologically low-grade cerebral oedema with oxidative/nitrosative stress, inflammation and disturbances of oscillatory networks in the brain. Severity classification and diagnostic approaches regarding mild forms of HE are still a matter of debate. Current medical treatment predominantly involves lactulose and rifaximin following rigorous treatment of so-called known HE precipitating factors. New treatments based on an improved pathophysiological understanding are emerging.


Asunto(s)
Várices Esofágicas y Gástricas , Encefalopatía Hepática , Várices Esofágicas y Gástricas/complicaciones , Hemorragia Gastrointestinal , Encefalopatía Hepática/diagnóstico , Encefalopatía Hepática/etiología , Humanos , Inflamación/complicaciones , Cirrosis Hepática/complicaciones
5.
JHEP Rep ; 4(4): 100440, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35287291

RESUMEN

Background & Aims: MicroRNAs (miRNAs) act as a regulatory mechanism on a post-transcriptional level by repressing gene transcription/translation and play a central role in the cellular stress response. Osmotic changes occur in a variety of diseases including liver cirrhosis and hepatic encephalopathy. Changes in cell hydration and alterations of the cellular volume are major regulators of cell function and gene expression. In this study, the modulation of hepatic gene expression in response to hypoosmolarity was studied. Methods: mRNA analyses of normo- and hypoosmotic perfused rat livers by gene expression arrays were used to identify miRNA and their potential target genes associated with cell swelling preceding cell proliferation. Selected miR-141-3p was also investigated in isolated hepatocytes treated with miRNA mimic, cell stretching, and after partial hepatectomy. Inhibitor perfusion studies were performed to unravel signalling pathways responsible for miRNA upregulation. Results: Using genome-wide transcriptomic analysis, it was shown that hypoosmotic exposure led to differential gene expression in perfused rat liver. Moreover, miR-141-3p was upregulated by hypoosmolarity in perfused rat liver and in primary hepatocytes. In concert with this, miR-141-3p upregulation was prevented after Src-, Erk-, and p38-MAPK inhibition. Furthermore, luciferase reporter assays demonstrated that miR-141-3p targets cyclin dependent kinase 8 (Cdk8) mRNA. Partial hepatectomy transiently upregulated miR-141-3p levels just after the initiation of hepatocyte proliferation, whereas Cdk8 mRNA was downregulated. The mechanical stretching of rat hepatocytes resulted in miR-141-3p upregulation, whereas Cdk8 mRNA tended to decrease. Notably, the overexpression of miR-141-3p inhibited the proliferation of Huh7 cells. Conclusions: Src-mediated upregulation of miR-141-3p was found in hepatocytes in response to hypoosmotic swelling and mechanical stretching. Because of its antiproliferative function, miR-141-3p may counter-regulate the proliferative effects triggered by these stimuli. Lay summary: In this study, we identified microRNA 141-3p as an osmosensitive miRNA, which inhibits proliferation during liver cell swelling. Upregulation of microRNA 141-3p, controlled by Src-, Erk-, and p38-MAPK signalling, results in decreased mRNA levels of various genes involved in metabolic processes, macromolecular biosynthesis, and cell cycle progression.

6.
Anal Biochem ; 641: 114548, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35032459

RESUMEN

Molecular alterations underlying cerebral impairment in hyperammonemic disorders such as in hepatic encephalopathy (HE) are only poorly understood. Using transcriptomics and proteomics on brains of mice with systemic hyperammonemia resulting from knockout of hepatic glutamine synthetase (LGS-KO) we identified up to 214 genes and 34 proteins whose expressions were altered in brains of LGS-KO mice in a brain region-specific way. Differentially expressed genes were enriched for those related to oxidative stress, cell proliferation, heme metabolism and others. Due to their particularly high expression changes, coactivator associated arginine methyltransferase 1 (CARM1), TROVE2 and Lipocalin-2 (LCN2) were selected for further analyses. All selected candidates were expressed by astrocytes in rodent brain and challenging cultured astrocytes with NH4Cl changed their protein and mRNA levels similar to what was found in brains of LGS-KO mice. Further functional analyses suggested a role of CARM1 for senescence, TROVE2 for RNA quality control and LCN2 for disturbed iron homeostasis in ammonia-exposed astrocytes. LCN2 protein and Trove2 mRNA were also elevated in cerebral cortex of ammonium acetate-challenged rats and in post mortem brain tissue from patients with liver cirrhosis and HE, respectively. This study identified new molecular players potentially relevant for cerebral dysfunction in HE.


Asunto(s)
Corteza Cerebral/metabolismo , Glutamato-Amoníaco Ligasa/metabolismo , Encefalopatía Hepática/metabolismo , Hiperamonemia/metabolismo , Proteoma/metabolismo , Animales , Glutamato-Amoníaco Ligasa/genética , Encefalopatía Hepática/genética , Encefalopatía Hepática/fisiopatología , Hepatocitos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteoma/genética , Proteómica , Transcriptoma
7.
Biol Chem ; 402(9): 1073-1085, 2021 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-34333885

RESUMEN

The structural-functional organization of ammonia and glutamine metabolism in the liver acinus involves highly specialized hepatocyte subpopulations like glutamine synthetase (GS) expressing perivenous hepatocytes (scavenger cells). However, this cell population has not yet been characterized extensively regarding expression of other genes and potential subpopulations. This was investigated in the present study by proteome profiling of periportal GS-negative and perivenous GS-expressing hepatocytes from mouse and rat. Apart from established markers of GS+ hepatocytes such as glutamate/aspartate transporter II (GLT1) or ammonium transporter Rh type B (RhBG), we identified novel scavenger cell-specific proteins like basal transcription factor 3 (BTF3) and heat-shock protein 25 (HSP25). Interestingly, BTF3 and HSP25 were heterogeneously distributed among GS+ hepatocytes in mouse liver slices. Feeding experiments showed that RhBG expression was increased in livers from mice fed with high protein diet compared to standard chow. While spatial distributions of GS and carbamoylphosphate synthetase 1 (CPS1) were unaffected, periportal areas constituted by glutaminase 2 (GLS2)-positive hepatocytes were enlarged or reduced in response to high or low protein diet, respectively. The data suggest that the population of perivenous GS+ scavenger cells is heterogeneous and not uniform as previously suggested which may reflect a functional heterogeneity, possibly relevant for liver regeneration.


Asunto(s)
Hígado , Animales , Glutamato-Amoníaco Ligasa , Regeneración Hepática , Masculino , Ratones , Ratas
8.
Biol Chem ; 402(9): 1087-1102, 2021 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-34049427

RESUMEN

Hepatic encephalopathy (HE) is a frequent neuropsychiatric complication in patients with acute or chronic liver failure. Symptoms of HE in particular include disturbances of sensory and motor functions and cognition. HE is triggered by heterogeneous factors such as ammonia being a main toxin, benzodiazepines, proinflammatory cytokines and hyponatremia. HE in patients with liver cirrhosis is triggered by a low-grade cerebral edema and cerebral oxidative/nitrosative stress which bring about a number of functionally relevant alterations including posttranslational protein modifications, oxidation of RNA, gene expression changes and senescence. These alterations are suggested to impair astrocyte/neuronal functions and communication. On the system level, a global slowing of oscillatory brain activity and networks can be observed paralleling behavioral perceptual and motor impairments. Moreover, these changes are related to increased cerebral ammonia, alterations in neurometabolite and neurotransmitter concentrations and cortical excitability in HE patients.


Asunto(s)
Encefalopatía Hepática , Astrocitos , Edema Encefálico , Humanos
9.
Biol Chem ; 402(9): 1063-1072, 2021 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-33962502

RESUMEN

Glutamine synthetase (GS) in the liver is expressed in a small perivenous, highly specialized hepatocyte population and is essential for the maintenance of low, non-toxic ammonia levels in the organism. However, GS activity can be impaired by tyrosine nitration of the enzyme in response to oxidative/nitrosative stress in a pH-sensitive way. The underlying molecular mechanism as investigated by combined molecular simulations and in vitro experiments indicates that tyrosine nitration can lead to a fully reversible and pH-sensitive regulation of protein function. This approach was also used to understand the functional consequences of several recently described point mutations of human GS with clinical relevance and to suggest an approach to restore impaired GS activity.


Asunto(s)
Glutamato-Amoníaco Ligasa , Hepatocitos , Humanos , Hígado
10.
FEBS J ; 288(3): 837-860, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32525608

RESUMEN

Silencing of the fragile X mental retardation 1 (FMR1) gene and consequently lack of synthesis of FMR protein (FMRP) are associated with fragile X syndrome, which is one of the most prevalent inherited intellectual disabilities, with additional roles in increased viral infection, liver disease, and reduced cancer risk. FMRP plays critical roles in chromatin dynamics, RNA binding, mRNA transport, and mRNA translation. However, the underlying molecular mechanisms, including the (sub)cellular FMRP protein networks, remain elusive. Here, we employed affinity pull-down and quantitative LC-MS/MS analyses with FMRP. We identified known and novel candidate FMRP-binding proteins as well as protein complexes. FMRP interacted with 180 proteins, 28 of which interacted with its N terminus. Interaction with the C terminus of FMRP was observed for 102 proteins, and 48 proteins interacted with both termini. This FMRP interactome comprises known FMRP-binding proteins, including the ribosomal proteins FXR1P, NUFIP2, Caprin-1, and numerous novel FMRP candidate interacting proteins that localize to different subcellular compartments, including CARF, LARP1, LEO1, NOG2, G3BP1, NONO, NPM1, SKIP, SND1, SQSTM1, and TRIM28. Our data considerably expand the protein and RNA interaction networks of FMRP, which thereby suggest that, in addition to its known functions, FMRP participates in transcription, RNA metabolism, ribonucleoprotein stress granule formation, translation, DNA damage response, chromatin dynamics, cell cycle regulation, ribosome biogenesis, miRNA biogenesis, and mitochondrial organization. Thus, FMRP seems associated with multiple cellular processes both under normal and cell stress conditions in neuronal as well as non-neuronal cell types, as exemplified by its role in the formation of stress granules.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Mapas de Interacción de Proteínas , Estrés Fisiológico , Proteínas Portadoras/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Células Cultivadas , Cromatografía Liquida/métodos , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Células MCF-7 , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleofosmina , Unión Proteica , ARN/genética , ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Espectrometría de Masas en Tándem/métodos
11.
J Chem Theory Comput ; 16(7): 4694-4705, 2020 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-32551588

RESUMEN

Glutamine synthetase (GS) catalyzes an ATP-dependent condensation of glutamate and ammonia to form glutamine. This reaction-and therefore GS-are indispensable for the hepatic nitrogen metabolism. Nitration of tyrosine 336 (Y336) inhibits human GS activity. GS nitration and the consequent loss of GS function are associated with a broad range of neurological diseases. The mechanism by which Y336 nitration inhibits GS, however, is not understood. Here, we show by means of unbiased MD simulations, binding, and configurational free energy computations that Y336 nitration hampers ATP binding but only in the deprotonated and negatively charged state of residue 336. By contrast, for the protonated and neutral state, our computations indicate an increased binding affinity for ATP. pKa computations of nitrated Y336 within GS predict a pKa of ∼5.3. Thus, at physiological pH, nitrated Y336 exists almost exclusively in the deprotonated and negatively charged state. In vitro experiments confirm these predictions, in that, the catalytic activity of nitrated GS is decreased at pH 7 and 6 but not at pH 4. These results indicate a novel, fully reversible, pH-sensitive mechanism for the regulation of GS activity by tyrosine nitration.


Asunto(s)
Glutamato-Amoníaco Ligasa/metabolismo , Nitratos/química , Tirosina/química , Adenosina Trifosfato/metabolismo , Sitios de Unión , Glutamato-Amoníaco Ligasa/antagonistas & inhibidores , Glutamato-Amoníaco Ligasa/genética , Humanos , Concentración de Iones de Hidrógeno , Cinética , Simulación de Dinámica Molecular , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Termodinámica
12.
Sci Rep ; 10(1): 5795, 2020 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-32242141

RESUMEN

Functional selectivity is the ligand-specific activation of certain signal transduction pathways at a receptor and has been described for G protein-coupled receptors. However, it has not yet been described for ligands interacting with integrins without αI domain. Here, we show by molecular dynamics simulations that four side chain-modified derivatives of tauroursodeoxycholic acid (TUDC), an agonist of α5ß1 integrin, differentially shift the conformational equilibrium of α5ß1 integrin towards the active state, in line with the extent of ß1 integrin activation from immunostaining. Unlike TUDC, 24-nor-ursodeoxycholic acid (norUDCA)-induced ß1 integrin activation triggered only transient activation of extracellular signal-regulated kinases and p38 mitogen-activated protein kinase and, consequently, only transient insertion of the bile acid transporter Bsep into the canalicular membrane, and did not involve activation of epidermal growth factor receptor. These results provide evidence that TUDC and norUDCA exert a functional selectivity at α5ß1 integrin and may provide a rationale for differential therapeutic use of UDCA and norUDCA.


Asunto(s)
Colagogos y Coleréticos/farmacología , Integrina alfa5beta1/metabolismo , Hígado/metabolismo , Sistema de Señalización de MAP Quinasas , Ácido Tauroquenodesoxicólico/farmacología , Ácido Ursodesoxicólico/farmacología , Miembro 11 de la Subfamilia B de Transportador de Casetes de Unión al ATP/metabolismo , Animales , Sitios de Unión , Colagogos y Coleréticos/química , Receptores ErbB/metabolismo , Integrina alfa5beta1/química , Hígado/efectos de los fármacos , Masculino , Simulación del Acoplamiento Molecular , Unión Proteica , Ratas , Ratas Wistar , Ácido Tauroquenodesoxicólico/química , Ácido Ursodesoxicólico/química , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
13.
CNS Neurosci Ther ; 26(3): 355-366, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31571389

RESUMEN

AIMS: Histamine H3 receptor (H3R) antagonists/inverse agonists increase vigilance. We studied brain histaminergic pathways under hyperammonemia and the transcriptome of receptors and their signaling cascades to provide a rationale for wake-promoting therapies. METHODS: We analyzed histamine-induced long-lasting depression of corticostriatal synaptic transmission (LLDhist). As the expression of dopamine 1 receptors (D1R) is upregulated in LGS-KO striatum where D1R-H3R dimers may exist, we investigated actions of H3R and D1R agonists and antagonists. We analyzed transcription of selected genes in cortex and dorsal striatum in a mouse model of inborn hyperammonemia (liver-specific glutamine synthetase knockout: LGS-KO) and compared it with human hepatic encephalopathy. RESULTS: LGS-KO mice showed significant reduction of the direct depression (DD) but not the long-lasting depression (LLD) by histamine. Neither pharmacological activation nor inhibition of D1R significantly affected DDhist and LLDhist in WT striatum, while in LGS-KO mice D1R activation suppressed LLDhist. Histaminergic signaling was found unchanged at the transcriptional level except for the H2R. A study of cAMP-regulated genes indicated a significant reduction in the molecular signature of wakefulness in the diseased cortex. CONCLUSIONS: Our findings provide a rationale for the development of aminergic wake-promoting therapeutics in hyperammonemic disorders.


Asunto(s)
Corteza Cerebral/metabolismo , Cuerpo Estriado/metabolismo , Histamina/uso terapéutico , Hiperamonemia/tratamiento farmacológico , Hiperamonemia/metabolismo , Plasticidad Neuronal/fisiología , Animales , Corteza Cerebral/efectos de los fármacos , Cuerpo Estriado/efectos de los fármacos , Expresión Génica , Histamina/farmacología , Agonistas de los Receptores Histamínicos/farmacología , Agonistas de los Receptores Histamínicos/uso terapéutico , Antagonistas de los Receptores Histamínicos H3/farmacología , Hiperamonemia/genética , Masculino , Ratones , Ratones Noqueados , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/fisiología , Plasticidad Neuronal/efectos de los fármacos , Técnicas de Cultivo de Órganos
14.
EBioMedicine ; 48: 539-553, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31648987

RESUMEN

BACKGROUND: Hepatic encephalopathy (HE) is a severe neuropsychiatric syndrome caused by various types of liver failure resulting in hyperammonemia-induced dysfunction of astrocytes. It is unclear whether autophagy, an important pro-survival pathway, is altered in the brains of ammonia-intoxicated animals as well as in HE patients. METHODS: Using primary rat astrocytes, a co-culture model of primary mouse astrocytes and neurons, an in vivo rat HE model, and post mortem brain samples of liver cirrhosis patients with HE we analyzed whether and how hyperammonemia modulates autophagy. FINDINGS: We show that autophagic flux is efficiently inhibited after administration of ammonia in astrocytes. This occurs in a fast, reversible, time-, dose-, and ROS-dependent manner and is mediated by ammonia-induced changes in intralysosomal pH. Autophagic flux is also strongly inhibited in the cerebral cortex of rats after acute ammonium intoxication corroborating our results using an in vivo rat HE model. Transglutaminase 2 (TGM2), a factor promoting autophagy, is upregulated in astrocytes of in vitro- and in vivo-HE models as well as in post mortem brain samples of liver cirrhosis patients with HE, but not in patients without HE. LC3, a commonly used autophagy marker, is significantly increased in the brain of HE patients. Ammonia also modulated autophagy moderately in neuronal cells. We show that taurine, known to ameliorate several parameters caused by hyperammonemia in patients suffering from liver failure, is highly potent in reducing ammonia-induced impairment of autophagic flux. This protective effect of taurine is apparently not linked to inhibition of mTOR signaling but rather to reducing ammonia-induced ROS formation. INTERPRETATION: Our data support a model in which autophagy aims to counteract ammonia-induced toxicity, yet, as acidification of lysosomes is impaired, possible protective effects thereof, are hampered. We propose that modulating autophagy in astrocytes and/or neurons, e.g. by taurine, represents a novel strategy to treat liver diseases associated with HE. FUNDING: Supported by the DFG, CRC974 "Communication and Systems Relevance in Liver Injury and Regeneration", Düsseldorf (Project number 190586431) Projects A05 (DH), B04 (BG), B05 (NK), and B09 (ASR).


Asunto(s)
Astrocitos/metabolismo , Autofagia , Encefalopatía Hepática/etiología , Encefalopatía Hepática/metabolismo , Animales , Astrocitos/ultraestructura , Autopsia , Biopsia , Línea Celular , Células Cultivadas , Encefalopatía Hepática/complicaciones , Encefalopatía Hepática/patología , Humanos , Concentración de Iones de Hidrógeno , Hiperamonemia/etiología , Lisosomas/metabolismo , Lisosomas/ultraestructura , Ratones , Neuronas/metabolismo , Neuronas/ultraestructura , Proteína Glutamina Gamma Glutamiltransferasa 2 , Ratas , Especies Reactivas de Oxígeno/metabolismo
15.
J Hepatol ; 71(5): 930-941, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31279900

RESUMEN

BACKGROUND & AIMS: Cerebral oxidative stress plays an important role in the pathogenesis of hepatic encephalopathy (HE), but the underlying mechanisms are incompletely understood. Herein, we analyzed a role of heme oxygenase (HO)1, iron and NADPH oxidase 4 (Nox4) for the induction of oxidative stress and senescence in HE. METHODS: Gene and protein expression in human post-mortem brain samples was analyzed by gene array and western blot analysis. Mechanisms and functional consequences of HO1 upregulation were studied in NH4Cl-exposed astrocytes in vitro by western blot, qPCR and super-resolution microscopy. RESULTS: HO1 and the endoplasmic reticulum (ER) stress marker grp78 were upregulated, together with changes in the expression of multiple iron metabolism-related genes, in post-mortem brain samples from patients with liver cirrhosis and HE. NH4Cl elevated HO1 protein and mRNA in cultured astrocytes through glutamine synthetase (GS)-dependent upregulation of glutamine/fructose amidotransferases 1/2 (GFAT1/2), which blocked the transcription of the HO1-targeting miR326-3p in a O-GlcNAcylation dependent manner. Upregulation of HO1 by NH4Cl triggered ER stress and was associated with elevated levels of free ferrous iron and expression changes in iron metabolism-related genes, which were largely abolished after knockdown or inhibition of GS, GFAT1/2, HO1 or iron chelation. NH4Cl, glucosamine (GlcN) and inhibition of miR326-3p upregulated Nox4, while knockdown of Nox4, GS, GFAT1/2, HO1 or iron chelation prevented NH4Cl-induced RNA oxidation and astrocyte senescence. Elevated levels of grp78 and O-GlcNAcylated proteins were also found in brain samples from patients with liver cirrhosis and HE. CONCLUSION: The present study identified glucosamine synthesis-dependent protein O-GlcNAcylation as a novel mechanism in the pathogenesis of HE that triggers oxidative and ER stress, as well as senescence, through upregulation of HO1 and Nox4. LAY SUMMARY: Patients with liver cirrhosis frequently exhibit hyperammonemia and suffer from cognitive and motoric dysfunctions, which at least in part involve premature ageing of the astrocytes in the brain. This study identifies glucosamine and an O-GlcNAcylation-dependent disruption of iron homeostasis as novel triggers of oxidative stress, thereby mediating ammonia toxicity in the brain.


Asunto(s)
Amoníaco/farmacología , Senescencia Celular/genética , Hemo Oxigenasa (Desciclizante)/metabolismo , Hemo-Oxigenasa 1/metabolismo , Encefalopatía Hepática/metabolismo , Proteínas de la Membrana/metabolismo , Estrés Oxidativo/efectos de los fármacos , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Regulación hacia Arriba/genética , Adulto , Anciano , Animales , Animales Recién Nacidos , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Células Cultivadas , Chaperón BiP del Retículo Endoplásmico , Femenino , Glucosamina/biosíntesis , Hemo-Oxigenasa 1/genética , Encefalopatía Hepática/etiología , Humanos , Cirrosis Hepática/complicaciones , Masculino , Glicoproteínas de Membrana/genética , Proteínas de la Membrana/genética , Proteínas de Transporte de Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Estrés Oxidativo/genética , Ratas , Ratas Wistar , Lóbulo Temporal/metabolismo , Lóbulo Temporal/patología
16.
FASEB J ; 33(10): 11507-11527, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31345061

RESUMEN

We previously reported that inactivation of the transmembrane taurine transporter (TauT or solute carrier 6a6) causes early retinal degeneration in mice. Compatible with taurine's indispensability for cell volume homeostasis, protein stabilization, cytoprotection, antioxidation, and immuno- and neuromodulation, mice develop multisystemic dysfunctions (hearing loss; liver fibrosis; and behavioral, heart, and skeletal muscle abnormalities) later on. Here, by genetic, cell biologic, in vivo1H-magnetic resonance spectroscopy and molecular dynamics simulation studies, we conducted in-depth characterization of a novel disorder: human TAUT deficiency. Loss of TAUT function due to a homozygous missense mutation caused panretinal degeneration in 2 brothers. TAUTp.A78E still localized in the plasma membrane but is predicted to impact structural stabilization. 3H-taurine uptake by peripheral blood mononuclear cells was reduced by 95%, and taurine levels were severely reduced in plasma, skeletal muscle, and brain. Extraocular dysfunctions were not yet detected, but significantly increased urinary excretion of 8-oxo-7,8-dihydroguanosine indicated generally enhanced (yet clinically unapparent) oxidative stress and RNA oxidation, warranting continuous broad surveillance.-Preising, M. N., Görg, B., Friedburg, C., Qvartskhava, N., Budde, B. S., Bonus, M., Toliat, M. R., Pfleger, C., Altmüller, J., Herebian, D., Beyer, M., Zöllner, H. J., Wittsack, H.-J., Schaper, J., Klee, D., Zechner, U., Nürnberg, P., Schipper, J., Schnitzler, A., Gohlke, H., Lorenz, B., Häussinger, D., Bolz, H. J. Biallelic mutation of human SLC6A6 encoding the taurine transporter TAUT is linked to early retinal degeneration.


Asunto(s)
Glicoproteínas de Membrana/genética , Proteínas de Transporte de Membrana/genética , Mutación Missense/genética , Degeneración Retiniana/metabolismo , Taurina/metabolismo , Transporte Biológico/fisiología , Membrana Celular/metabolismo , Células Cultivadas , Guanosina/análogos & derivados , Guanosina/metabolismo , Humanos , Leucocitos Mononucleares/metabolismo , Músculo Esquelético/metabolismo , Estrés Oxidativo/fisiología
17.
Biol Chem ; 400(12): 1551-1565, 2019 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-31152635

RESUMEN

Tauroursodeoxycholate (TUDC) is well known to protect against glycochenodeoxycholate (GCDC)-induced apoptosis in rat hepatocytes. In the present study, we analyzed whether TUDC also exerts protective effects by modulating GCDC-induced gene expression changes. For this, gene array-based transcriptome analysis and quantitative polymerase chain reaction (qPCR) were performed on RNA isolated from rat livers perfused with GCDC, TUDC or a combination of both (each 20 µm for 2 h). GCDC led to a significant increase of lactate dehydrogenase (LDH) into the effluent perfusate, which was prevented by TUDC. GCDC, TUDC and co-perfusion induced distinct gene expression changes. While GCDC upregulated the expression of several pro-inflammatory genes, co-perfusion with TUDC increased the expression of pro-proliferative and anti-apoptotic p53 target genes. In line with this, levels of serine20-phosphorylated p53 and of its target gene p21 were elevated by GCDC in a TUDC-sensitive way. GCDC upregulated the oxidative stress surrogate marker 8OH(d)G and the pro-apoptotic microRNAs miR-15b/16 and these effects were prevented by TUDC. The upregulation of miR-15b and miR-16 in GCDC-perfused livers was accompanied by a downregulation of several potential miR-15b and miR-16 target genes. The present study identified changes in the transcriptome of the rat liver which suggest, that TUDC is hepatoprotective by counteracting GCDC-induced gene expression changes.


Asunto(s)
Ácido Glicoquenodesoxicólico/antagonistas & inhibidores , Ácido Tauroquenodesoxicólico/farmacología , Animales , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Ácido Glicoquenodesoxicólico/farmacología , Hígado/efectos de los fármacos , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN/efectos de los fármacos , ARN/genética , ARN/aislamiento & purificación , Ratas , Ratas Wistar , Reacción en Cadena en Tiempo Real de la Polimerasa
18.
Cell Physiol Biochem ; 52(6): 1427-1445, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31088037

RESUMEN

BACKGROUND/AIMS: Hydrophobic bile salts, such as glycochenodeoxycholate (GCDC) can trigger hepatocyte apoptosis, which is prevented by tauroursodesoxycholate (TUDC), but the effects of GCDC and TUDC on sinusoidal bile salt uptake via the Na⁺-taurocholate transporting polypeptide (Ntcp) are unclear. METHODS: The effects of GCDC and TUDC on the plasma membrane localization of Ntcp were studied in perfused rat liver by means of immunofluorescence analysis and super-resolution microscopy. The underlying signaling events were investigated by Western blotting and inhibitor studies. RESULTS: GCDC (20 µmol/l) induced within 60 min a retrieval of Ntcp from the basolateral membrane into the cytosol, which was accompanied by an activating phosphorylation of the Src kinases Fyn and Yes. Both, Fyn activation and the GCDC-induced Ntcp retrieval from the plasma membrane were sensitive to the NADPH oxidase inhibitor apocynin, the antioxidant N-acetylcysteine and the Src family kinase inhibitors SU6656 and PP-2, whereas PP-2 did not inhibit GCDC-induced Yes activation. Internalization of Ntcp by GCDC was also prevented by the protein kinase C (PKC) inhibitor Gö6850. TUDC (20 µmol/l) reversed the GCDC-induced retrieval of Ntcp from the plasma membrane and prevented the activation of Fyn and Yes in GCDC-perfused rat livers. Reinsertion of Ntcp into the basolateral membrane in GCDC-perfused livers by TUDC was sensitive to the protein kinase A (PKA) inhibitor H89 and the integrin-inhibitory peptide GRGDSP, whereas the control peptide GRADSP was ineffective. Ex posure of cultured rat hepatocytes to GCDC (50 µmol/l, 15min) increased the fluorescence intensity of the reactive oxygen fluorescent indicator DCF to about 1.6-fold of untreated controls in a TUDC (50 µmol/l)-sensitive way. GCDC caused a TUDC-sensitive canalicular dilatation without evidence for Bsep retrieval from the canalicular membrane. CONCLUSION: The present study suggests that GCDC triggers the retrieval of Ntcp from the basolateral membrane into the cytosol through an oxidative stress-dependent activation of Fyn. TUDC prevents the GCDC-induced Fyn activation and Ntcp retrieval through integrin-dependent activation of PKA.


Asunto(s)
Membrana Celular/metabolismo , Ácido Glicoquenodesoxicólico , Hígado/metabolismo , Transportadores de Anión Orgánico Sodio-Dependiente/metabolismo , Simportadores/metabolismo , Ácido Taurocólico , Animales , Regulación de la Expresión Génica/efectos de los fármacos , Ácido Glicoquenodesoxicólico/metabolismo , Ácido Glicoquenodesoxicólico/farmacología , Masculino , Transporte de Proteínas/efectos de los fármacos , Ratas , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Ácido Taurocólico/metabolismo , Ácido Taurocólico/farmacología
19.
Proc Natl Acad Sci U S A ; 116(13): 6313-6318, 2019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30862735

RESUMEN

Hepatic ammonia handling was analyzed in taurine transporter (TauT) KO mice. Surprisingly, hyperammonemia was present at an age of 3 and 12 months despite normal tissue integrity. This was accompanied by cerebral RNA oxidation. As shown in liver perfusion experiments, glutamine production from ammonia was diminished in TauT KO mice, whereas urea production was not affected. In livers from 3-month-old TauT KO mice protein expression and activity of glutamine synthetase (GS) were unaffected, whereas the ammonia-transporting RhBG protein was down-regulated by about 50%. Double reciprocal plot analysis of glutamine synthesis versus perivenous ammonia concentration revealed that TauT KO had no effect on the capacity of glutamine formation in 3-month-old mice, but doubled the ammonia concentration required for half-maximal glutamine synthesis. Since hepatic RhBG expression is restricted to GS-expressing hepatocytes, the findings suggest that an impaired ammonia transport into these cells impairs glutamine synthesis. In livers from 12-, but not 3-month-old TauT KO mice, RhBG expression was not affected, surrogate markers for oxidative stress were strongly up-regulated, and GS activity was decreased by 40% due to an inactivating tyrosine nitration. This was also reflected by kinetic analyses in perfused liver, which showed a decreased glutamine synthesizing capacity by 43% and a largely unaffected ammonia concentration dependence. It is concluded that TauT deficiency triggers hyperammonemia through impaired hepatic glutamine synthesis due to an impaired ammonia transport via RhBG at 3 months and a tyrosine nitration-dependent inactivation of GS in 12-month-old TauT KO mice.


Asunto(s)
Amoníaco/metabolismo , Enfermedades Carenciales , Inactivación Metabólica , Hígado/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Animales , Enfermedades Carenciales/patología , Modelos Animales de Enfermedad , Proteínas Transportadoras de GABA en la Membrana Plasmática/metabolismo , Técnicas de Silenciamiento del Gen , Glutamato-Amoníaco Ligasa/metabolismo , Glutamina/metabolismo , Glicoproteínas/metabolismo , Hepatocitos/metabolismo , Hiperamonemia/metabolismo , Cinética , Hígado/patología , Glicoproteínas de Membrana/genética , Proteínas de Transporte de Membrana/genética , Ratones , Ratones Noqueados , Estrés Oxidativo , Perfusión , Urea/metabolismo
20.
Cell Metab ; 29(5): 1135-1150.e6, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-30713111

RESUMEN

Based on their lobule location, hepatocytes display differential gene expression, including pericentral hepatocytes that surround the central vein, which are marked by Wnt-ß-catenin signaling. Activating ß-catenin mutations occur in a variety of liver tumors, including hepatocellular carcinoma (HCC), but no specific therapies are available to treat these tumor subsets. Here, we identify a positive relationship between ß-catenin activation, its transcriptional target glutamine synthetase (GS), and p-mTOR-S2448, an indicator of mTORC1 activation. In normal livers of mice and humans, pericentral hepatocytes were simultaneously GS and p-mTOR-S2448 positive, as were ß-catenin-mutated liver tumors. Genetic disruption of ß-catenin signaling or GS prevented p-mTOR-S2448 expression, while its forced expression in ß-catenin-deficient livers led to ectopic p-mTOR-S2448 expression. Further, we found notable therapeutic benefit of mTORC1 inhibition in mutant-ß-catenin-driven HCC through suppression of cell proliferation and survival. Thus, mTORC1 inhibitors could be highly relevant in the treatment of liver tumors that are ß-catenin mutated and GS positive.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Glutamina/metabolismo , Neoplasias Hepáticas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Mutación , beta Catenina/genética , Acetatos/farmacología , Acetatos/uso terapéutico , Animales , Carcinoma Hepatocelular/tratamiento farmacológico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Niño , Preescolar , Modelos Animales de Enfermedad , Femenino , Glutamato-Amoníaco Ligasa/genética , Glutamato-Amoníaco Ligasa/metabolismo , Hepatocitos/metabolismo , Humanos , Lactante , Neoplasias Hepáticas/tratamiento farmacológico , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fenoles/farmacología , Fenoles/uso terapéutico , Estudios Retrospectivos , Sirolimus/farmacología , Sirolimus/uso terapéutico , Serina-Treonina Quinasas TOR/genética , Transfección , Vía de Señalización Wnt/genética , beta Catenina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...