Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Pathol ; 263(1): 5-7, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38404051

RESUMEN

Advances in the digital pathology field have facilitated the characterization of histology samples for both clinical and preclinical research. However, uncovering subtle correlations between bioimaging, clinical and molecular parameters requires extensive statistical analysis. As a user-friendly software, Hourglass, simplifies multiparametric dataset analysis through intuitive data visualization and statistical tools. Systemic analysis of interleukin-6 (IL-6)/pStat3 signaling pathway through Hourglass revealed differences in regional immune cell composition within tumors. Moreover, these regional disparities were partially mediated by sex. Overall, Hourglass simplifies information extraction from complex datasets, resolving overlooked regional and global spatial tumor differences. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/patología , Transducción de Señal , Programas Informáticos , Reino Unido
3.
J Clin Invest ; 133(21)2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37607005

RESUMEN

Solid cancers like pancreatic ductal adenocarcinoma (PDAC), a type of pancreatic cancer, frequently exploit nerves for rapid dissemination. This neural invasion (NI) is an independent prognostic factor in PDAC, but insufficiently modeled in genetically engineered mouse models (GEMM) of PDAC. Here, we systematically screened for human-like NI in Europe's largest repository of GEMM of PDAC, comprising 295 different genotypes. This phenotype screen uncovered 2 GEMMs of PDAC with human-like NI, which are both characterized by pancreas-specific overexpression of transforming growth factor α (TGF-α) and conditional depletion of p53. Mechanistically, cancer-cell-derived TGF-α upregulated CCL2 secretion from sensory neurons, which induced hyperphosphorylation of the cytoskeletal protein paxillin via CCR4 on cancer cells. This activated the cancer migration machinery and filopodia formation toward neurons. Disrupting CCR4 or paxillin activity limited NI and dampened tumor size and tumor innervation. In human PDAC, phospho-paxillin and TGF-α-expression constituted strong prognostic factors. Therefore, we believe that the TGF-α-CCL2-CCR4-p-paxillin axis is a clinically actionable target for constraining NI and tumor progression in PDAC.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Animales , Ratones , Factor de Crecimiento Transformador alfa/genética , Factor de Crecimiento Transformador alfa/metabolismo , Paxillin/genética , Paxillin/metabolismo , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/metabolismo , Fenotipo , Línea Celular Tumoral , Neoplasias Pancreáticas
4.
Gut ; 72(2): 345-359, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35428659

RESUMEN

OBJECTIVE: The lysyl oxidase-like protein 2 (LOXL2) contributes to tumour progression and metastasis in different tumour entities, but its role in pancreatic ductal adenocarcinoma (PDAC) has not been evaluated in immunocompetent in vivo PDAC models. DESIGN: Towards this end, we used PDAC patient data sets, patient-derived xenograft in vivo and in vitro models, and four conditional genetically-engineered mouse models (GEMMS) to dissect the role of LOXL2 in PDAC. For GEMM-based studies, K-Ras +/LSL-G12D;Trp53 LSL-R172H;Pdx1-Cre mice (KPC) and the K-Ras +/LSL-G12D;Pdx1-Cre mice (KC) were crossed with Loxl2 allele floxed mice (Loxl2Exon2 fl/fl) or conditional Loxl2 overexpressing mice (R26Loxl2 KI/KI) to generate KPCL2KO or KCL2KO and KPCL2KI or KCL2KI mice, which were used to study overall survival; tumour incidence, burden and differentiation; metastases; epithelial to mesenchymal transition (EMT); stemness and extracellular collagen matrix (ECM) organisation. RESULTS: Using these PDAC mouse models, we show that while Loxl2 ablation had little effect on primary tumour development and growth, its loss significantly decreased metastasis and increased overall survival. We attribute this effect to non-cell autonomous factors, primarily ECM remodelling. Loxl2 overexpression, on the other hand, promoted primary and metastatic tumour growth and decreased overall survival, which could be linked to increased EMT and stemness. We also identified tumour-associated macrophage-secreted oncostatin M (OSM) as an inducer of LOXL2 expression, and show that targeting macrophages in vivo affects Osm and Loxl2 expression and collagen fibre alignment. CONCLUSION: Taken together, our findings establish novel pathophysiological roles and functions for LOXL2 in PDAC, which could be potentially exploited to treat metastatic disease.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Ratones , Animales , Transición Epitelial-Mesenquimal/genética , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/patología , Modelos Animales de Enfermedad , Macrófagos/metabolismo , Aminoácido Oxidorreductasas/genética , Neoplasias Pancreáticas
5.
Cell Rep Med ; 3(11): 100815, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36384095

RESUMEN

Over 90% of pancreatic cancers present mutations in KRAS, one of the most common oncogenic drivers overall. Currently, most KRAS mutant isoforms cannot be targeted directly. Moreover, targeting single RAS downstream effectors induces adaptive resistance mechanisms. We report here on the combined inhibition of SHP2, upstream of KRAS, using the allosteric inhibitor RMC-4550 and of ERK, downstream of KRAS, using LY3214996. This combination shows synergistic anti-cancer activity in vitro, superior disruption of the MAPK pathway, and increased apoptosis induction compared with single-agent treatments. In vivo, we demonstrate good tolerability and efficacy of the combination, with significant tumor regression in multiple pancreatic ductal adenocarcinoma (PDAC) mouse models. Finally, we show evidence that 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) can be used to assess early drug responses in animal models. Based on these results, we will investigate this drug combination in the SHP2 and ERK inhibition in pancreatic cancer (SHERPA; ClinicalTrials.gov: NCT04916236) clinical trial, enrolling patients with KRAS-mutant PDAC.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animales , Ratones , Carcinoma Ductal Pancreático/tratamiento farmacológico , Línea Celular Tumoral , Neoplasias Pancreáticas/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas p21(ras)/genética , Ensayos Clínicos como Asunto , Neoplasias Pancreáticas
6.
Biol Open ; 11(7)2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35876380

RESUMEN

The use of preprints, research manuscripts shared publicly before completing the traditional peer-review process, is becoming a more common practice among life science researchers. Early-career researchers (ECRs) benefit from posting preprints as they are shareable, citable, and prove productivity. However, preprinting a manuscript involves a discussion among all co-authors, and ECRs are often not the decision-makers. Therefore, ECRs may find themselves in situations where they are interested in depositing a preprint but are unsure how to approach their co-authors or advisor about preprinting. Leveraging our own experiences as ECRs, and feedback from the research community, we have constructed a guide for ECRs who are considering preprinting to enable them to take ownership over the process and to raise awareness about preprinting options. We hope that this guide helps ECRs to initiate conversations about preprinting with co-authors and encourage them to preprint their future research.


Asunto(s)
Investigadores , Humanos
8.
Nat Cancer ; 1: 1027-1031, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34327335

RESUMEN

Recent advances in cancer neuroscience necessitate the systematic analysis of neural influences in cancer as potential therapeutic targets in oncology. Here, we outline recommendations for future preclinical and translational research in this field.


Asunto(s)
Neoplasias , Neurociencias , Predicción , Humanos , Neoplasias/terapia , Investigación Biomédica Traslacional
10.
Gastroenterology ; 161(1): 318-332.e9, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33819482

RESUMEN

BACKGROUND & AIMS: The existence of different subtypes of pancreatic ductal adenocarcinoma (PDAC) and their correlation with patient outcome have shifted the emphasis on patient classification for better decision-making algorithms and personalized therapy. The contribution of mechanisms regulating the cancer stem cell (CSC) population in different subtypes remains unknown. METHODS: Using RNA-seq, we identified B-cell CLL/lymphoma 3 (BCL3), an atypical nf-κb signaling member, as differing in pancreatic CSCs. To determine the biological consequences of BCL3 silencing in vivo and in vitro, we generated bcl3-deficient preclinical mouse models as well as murine cell lines and correlated our findings with human cell lines, PDX models, and 2 independent patient cohorts. We assessed the correlation of bcl3 expression pattern with clinical parameters and subtypes. RESULTS: Bcl3 was significantly down-regulated in human CSCs. Recapitulating this phenotype in preclinical mouse models of PDAC via BCL3 genetic knockout enhanced tumor burden, metastasis, epithelial to mesenchymal transition, and reduced overall survival. Fluorescence-activated cell sorting analyses, together with oxygen consumption, sphere formation, and tumorigenicity assays, all indicated that BCL3 loss resulted in CSC compartment expansion promoting cellular dedifferentiation. Overexpression of BCL3 in human PDXs diminished tumor growth by significantly reducing the CSC population and promoting differentiation. Human PDACs with low BCL3 expression correlated with increased metastasis, and BCL3-negative tumors correlated with lower survival and nonclassical subtypes. CONCLUSIONS: We demonstrate that bcl3 impacts pancreatic carcinogenesis by restraining CSC expansion and by curtailing an aggressive and metastatic tumor burden in PDAC across species. Levels of BCL3 expression are a useful stratification marker for predicting subtype characterization in PDAC, thereby allowing for personalized therapeutic approaches.


Asunto(s)
Proteínas del Linfoma 3 de Células B/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Células Madre Neoplásicas/metabolismo , Neoplasias Pancreáticas/metabolismo , Animales , Proteínas del Linfoma 3 de Células B/genética , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/secundario , Diferenciación Celular , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Metabolismo Energético , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Desnudos , Invasividad Neoplásica , Células Madre Neoplásicas/patología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Transducción de Señal , Carga Tumoral , Células Tumorales Cultivadas
11.
Cell Signal ; 81: 109938, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33539938

RESUMEN

Ovarian cancer (OC) is the deadliest gynecological cancer and is currently incurable with standard treatment regimens. Early invasion, intraperitoneal metastasis, and an aggressive course are the hallmarks of OC. The major reason for poor prognosis is a lack of molecular targets and highly effective targeted therapies. Therefore, identification of novel molecular targets and therapeutic strategies is urgently needed to improve OC survival. Herein we report that eukaryotic elongation factor-2 kinase (EF2K) is highly upregulated in primary and drug-resistant OC cells and its expresssion associated with progression free survival TCGA database) and promotes cell proliferation, survival, and invasion. Downregulation of EF2K reduced expression of integrin ß1 and cyclin D1 and the activity of the Src, phosphoinositide 3-kinase/AKT, and nuclear factor-κB signaling pathways. Also, in vivo, therapeutic targeting of EF2K by using single-lipid nanoparticles containing siRNA led to substantial inhibition of ovarian tumor growth and peritoneal metastasis in nude mouse models. Furthermore, EF2K inhibition led to robust apoptosis and markedly reduced intratumoral proliferation in vivo in ovarian tumor xenografts and intraperitoneal metastatic models. Collectively, our data suggest for the first time that EF2K plays an important role in OC growth, metastasis, and progression and may serve as a novel therapeutic target in OCs.


Asunto(s)
Quinasa del Factor 2 de Elongación/metabolismo , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Proteínas de Neoplasias/metabolismo , Neoplasias Ováricas/enzimología , Neoplasias Peritoneales/enzimología , Transducción de Señal , Regulación hacia Arriba , Animales , Línea Celular Tumoral , Quinasa del Factor 2 de Elongación/genética , Femenino , Humanos , Ratones , Ratones Desnudos , Metástasis de la Neoplasia , Proteínas de Neoplasias/genética , Neoplasias Ováricas/genética , Neoplasias Ováricas/mortalidad , Neoplasias Ováricas/patología , Neoplasias Peritoneales/genética , Neoplasias Peritoneales/patología , Neoplasias Peritoneales/secundario
12.
Medicine (Baltimore) ; 99(42): e22644, 2020 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-33080702

RESUMEN

RATIONALE: Glycogen storage disease type IA (GSD IA) is an inherited disorder of glycogen metabolism characterized by fasting hypoglycemia, hyperuricemia, and hyperlipidemia including hypertriglyceridemia (HTG). Patients have a higher risk of developing acute pancreatitis (AP) because of HTG. AP is a potentially life-threatening disease with a wide spectrum severity. Nevertheless, almost no reports exist on GSD IA-induced AP in adult patients. PATIENT CONCERNS: A 23-year-old male patient with GSD 1A is presented, who developed moderate severe AP due to HTG. DIAGNOSES: The GSD 1A genetic background of this patient was confirmed by Sanger sequencing. Laboratory tests, along with abdominal enhanced-computed tomography, were used for the diagnosis of HTG and AP. INTERVENTIONS: This patient was transferred to the intensive care unit and treated by reducing HTG, suppressing gastric acid, inhibiting trypsin activity, and relieving hyperuricemia and gout. OUTCOMES: Fifteen days after hospital admission, the patient had no complaints about abdominal pain and distention. Follow-up of laboratory tests displayed almost normal values. Reexamination by computed tomography exhibited a reduction in peripancreatic necrotic fluid collection compared with the initial stage. LESSONS: Fast and long-term reduction of triglycerides along with management of AP proved effective in relieving suffering of an adult GSD IA-patient and improving prognosis. Thus, therapeutic approaches have to be renewed and standardized to cope with all complications, especially AP, and enable a better outcome so that patients can master the disease.


Asunto(s)
Enfermedad del Almacenamiento de Glucógeno Tipo I/complicaciones , Pancreatitis/etiología , Humanos , Masculino , Pancreatitis/diagnóstico por imagen , Pancreatitis/terapia , Adulto Joven
14.
Cancer Cell ; 38(1): 11-14, 2020 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-32531270

RESUMEN

Neuro-glial activation is a recently identified hallmark of growing cancers. Targeting tumor hyperinnervation in preclinical and small clinical trials has yielded promising antitumor effects, highlighting the need of systematic analysis of neural influences in cancer (NIC). Here, we outline the strategies translating these findings from bench to the clinic.


Asunto(s)
Neoplasias/fisiopatología , Neoplasias/terapia , Sistema Nervioso/fisiopatología , Dolor en Cáncer/diagnóstico , Dolor en Cáncer/fisiopatología , Dolor en Cáncer/terapia , Desnervación/métodos , Humanos , Neoplasias/diagnóstico
15.
Cells ; 9(4)2020 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-32344698

RESUMEN

Pancreatic cancer is one of the deadliest cancer types urgently requiring effective therapeutic strategies. Autophagy occurs in several compartments of pancreatic cancer tissue including cancer cells, cancer associated fibroblasts, and immune cells where it can be subjected to a multitude of stimulatory and inhibitory signals fine-tuning its activity. Therefore, the effects of autophagy on pancreatic carcinogenesis and progression differ in a stage and context dependent manner. In the initiation stage autophagy hinders development of preneoplastic lesions; in the progression stage however, autophagy promotes tumor growth. This double-edged action of autophagy makes it a hard therapeutic target. Indeed, autophagy inhibitors have not yet shown survival improvements in clinical trials, indicating a need for better evaluation of existing results and smarter targeting techniques. Clearly, the role of autophagy in pancreatic cancer is complex and many aspects have to be considered when moving from the bench to the bedside.


Asunto(s)
Autofagia , Neoplasias Pancreáticas/patología , Investigación Biomédica Traslacional , Animales , Ensayos Clínicos como Asunto , Humanos , Terapia Molecular Dirigida , Neoplasias Pancreáticas/terapia , Microambiente Tumoral , Neoplasias Pancreáticas
16.
Gastroenterology ; 156(1): 203-217.e20, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30296435

RESUMEN

BACKGROUND AND AIMS: Cells in pancreatic ductal adenocarcinoma (PDAC) undergo autophagy, but its effects vary with tumor stage and genetic factors. We investigated the consequences of varying levels of the autophagy related 5 (Atg5) protein on pancreatic tumor formation and progression. METHODS: We generated mice that express oncogenic Kras in primary pancreatic cancer cells and have homozygous disruption of Atg5 (A5;Kras) or heterozygous disruption of Atg5 (A5+/-;Kras), and compared them with mice with only oncogenic Kras (controls). Pancreata were analyzed by histology and immunohistochemistry. Primary tumor cells were isolated and used to perform transcriptome, metabolome, intracellular calcium, extracellular cathepsin activity, and cell migration and invasion analyses. The cells were injected into wild-type littermates, and orthotopic tumor growth and metastasis were monitored. Atg5 was knocked down in pancreatic cancer cell lines using small hairpin RNAs; cell migration and invasion were measured, and cells were injected into wild-type littermates. PDAC samples were obtained from independent cohorts of patients and protein levels were measured on immunoblot and immunohistochemistry; we tested the correlation of protein levels with metastasis and patient survival times. RESULTS: A5+/-;Kras mice, with reduced Atg5 levels, developed more tumors and metastases, than control mice, whereas A5;Kras mice did not develop any tumors. Cultured A5+/-;Kras primary tumor cells were resistant to induction and inhibition of autophagy, had altered mitochondrial morphology, compromised mitochondrial function, changes in intracellular Ca2+ oscillations, and increased activity of extracellular cathepsin L and D. The tumors that formed in A5+/-;Kras mice contained greater numbers of type 2 macrophages than control mice, and primary A5+/-;Kras tumor cells had up-regulated expression of cytokines that regulate macrophage chemoattraction and differentiation into M2 macrophage. Knockdown of Atg5 in pancreatic cancer cell lines increased their migratory and invasive capabilities, and formation of metastases following injection into mice. In human PDAC samples, lower levels of ATG5 associated with tumor metastasis and shorter survival time. CONCLUSIONS: In mice that express oncogenic Kras in pancreatic cells, heterozygous disruption of Atg5 and reduced protein levels promotes tumor development, whereas homozygous disruption of Atg5 blocks tumorigenesis. Therapeutic strategies to alter autophagy in PDAC should consider the effects of ATG5 levels to avoid the expansion of resistant and highly aggressive cells.


Asunto(s)
Proteína 5 Relacionada con la Autofagia/metabolismo , Autofagia , Carcinoma Ductal Pancreático/metabolismo , Movimiento Celular , Neoplasias Pancreáticas/metabolismo , Animales , Proteína 5 Relacionada con la Autofagia/deficiencia , Proteína 5 Relacionada con la Autofagia/genética , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/prevención & control , Carcinoma Ductal Pancreático/secundario , Catepsinas/genética , Catepsinas/metabolismo , Proliferación Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Genes ras , Heterocigoto , Homocigoto , Ratones Noqueados , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/prevención & control , Transducción de Señal , Carga Tumoral , Células Tumorales Cultivadas
17.
Nat Med ; 24(7): 954-960, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29808009

RESUMEN

The ubiquitously expressed non-receptor protein tyrosine phosphatase SHP2, encoded by PTPN11, is involved in signal transduction downstream of multiple growth factor, cytokine and integrin receptors1. Its requirement for complete RAS-MAPK activation and its role as a negative regulator of JAK-STAT signaling have established SHP2 as an essential player in oncogenic signaling pathways1-7. Recently, a novel potent allosteric SHP2 inhibitor was presented as a viable therapeutic option for receptor tyrosine kinase-driven cancers, but was shown to be ineffective in KRAS-mutant tumor cell lines in vitro8. Here, we report a central and indispensable role for SHP2 in oncogenic KRAS-driven tumors. Genetic deletion of Ptpn11 profoundly inhibited tumor development in mutant KRAS-driven murine models of pancreatic ductal adenocarcinoma and non-small-cell lung cancer. We provide evidence for a critical dependence of mutant KRAS on SHP2 during carcinogenesis. Deletion or inhibition of SHP2 in established tumors delayed tumor progression but was not sufficient to achieve tumor regression. However, SHP2 was necessary for resistance mechanisms upon blockade of MEK. Synergy was observed when both SHP2 and MEK were targeted, resulting in sustained tumor growth control in murine and human patient-derived organoids and xenograft models of pancreatic ductal adenocarcinoma and non-small-cell lung cancer. Our data indicate the clinical utility of dual SHP2/MEK inhibition as a targeted therapy approach for KRAS-mutant cancers.


Asunto(s)
Mutación/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Animales , Carcinogénesis/metabolismo , Carcinogénesis/patología , Línea Celular Tumoral , Progresión de la Enfermedad , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Ratones , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteína Tirosina Fosfatasa no Receptora Tipo 11/deficiencia
18.
Drugs Aging ; 34(5): 331-357, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28349415

RESUMEN

Pancreatic ductal adenocarcinoma is a devastating malignancy, which is the result of late diagnosis, aggressive disease, and a lack of effective treatment options. Thus, pancreatic ductal adenocarcinoma is projected to become the second leading cause of cancer-related death by 2030. This review summarizes recent developments of oncological therapy in the palliative setting of metastatic pancreatic ductal adenocarcinoma. It further compiles novel targets and therapeutic approaches as well as promising treatment combinations, which are presently in preclinical evaluation, covering several aspects of the hallmarks of cancer. Finally, challenges to the implementation of an individualized therapy approach in the context of precision medicine are discussed.


Asunto(s)
Adenocarcinoma/tratamiento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Carcinoma Ductal Pancreático/tratamiento farmacológico , Neoplasias Pancreáticas/tratamiento farmacológico , Adenocarcinoma/genética , Adenocarcinoma/mortalidad , Adenocarcinoma/patología , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/mortalidad , Carcinoma Ductal Pancreático/patología , Ensayos Clínicos como Asunto , Humanos , Administración del Tratamiento Farmacológico , Terapia Molecular Dirigida , Cuidados Paliativos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/mortalidad , Neoplasias Pancreáticas/patología , Medicina de Precisión , Análisis de Supervivencia , Resultado del Tratamiento
19.
Gastroenterology ; 151(1): 180-193.e12, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27003603

RESUMEN

BACKGROUND & AIMS: One treatment strategy for pancreatic ductal adenocarcinoma is to modify, rather than deplete, the tumor stroma. Constitutive activation of the signal transducer and activator of transcription 3 (STAT3) is associated with progression of pancreatic and other solid tumors. We investigated whether loss of P53 function contributes to persistent activation of STAT3 and modification of the pancreatic tumor stroma in patients and mice. METHODS: Stat3, Il6st (encodes gp130), or Trp53 were disrupted, or a mutant form of P53 (P53R172H) or transgenic sgp130 were expressed, in mice that developed pancreatic tumors resulting from expression of activated KRAS (KrasG12D, KC mice). Pancreata were collected and analyzed by immunohistochemistry, in situ hybridization, quantitative reverse-transcription polymerase chain reaction (qPCR), or immunoblot assays; fluorescence-activated cell sorting was performed to identify immune cells. We obtained frozen pancreatic tumor specimens from patients and measured levels of phosphorylated STAT3 and P53 by immunohistochemistry; protein levels were associated with survival using Kaplan-Meier analyses. We measured levels of STAT3, P53, ligands for gp130, interleukin 6, cytokines, sonic hedgehog signaling, STAT3 phosphorylation (activation), and accumulation of reactive oxygen species in primary pancreatic cells from mice. Mice with pancreatic tumors were given gemcitabine and a Janus kinase 2 (JAK2) inhibitor; tumor growth was monitored by 3-dimensional ultrasound. RESULTS: STAT3 was phosphorylated constitutively in pancreatic tumor cells from KC mice with loss or mutation of P53. Tumor cells of these mice accumulated reactive oxygen species and had lower activity of the phosphatase SHP2 and prolonged phosphorylation of JAK2 compared with tumors from KC mice with functional P53. These processes did not require the gp130 receptor. Genetic disruption of Stat3 in mice, or pharmacologic inhibitors of JAK2 or STAT3 activation, reduced fibrosis and the numbers of pancreatic stellate cells in the tumor stroma and altered the types of immune cells that infiltrated tumors. Mice given a combination of gemcitabine and a JAK2 inhibitor formed smaller tumors and survived longer than mice given control agents; the tumor stroma had fewer activated pancreatic stellate cells, lower levels of periostin, and alterations in collagen production and organization. Phosphorylation of STAT3 correlated with P53 mutation and features of infiltrating immune cells in human pancreatic tumors. Patients whose tumors had lower levels of phosphorylated STAT3 and functional P53 had significantly longer survival times than patients with high levels of phosphorylated STAT3 and P53 mutation. CONCLUSIONS: In pancreatic tumors of mice, loss of P53 function activates JAK2-STAT3 signaling, which promotes modification of the tumor stroma and tumor growth and resistance to gemcitabine. In human pancreatic tumors, STAT3 phosphorylation correlated with P53 mutation and patient survival time. Inhibitors of this pathway slow tumor growth and stroma formation, alter immune cell infiltration, and prolong survival of mice. Transcript profiling: ArrayExpress accession number: E-MTAB-3278.


Asunto(s)
Adenocarcinoma/genética , Carcinoma Ductal Pancreático/genética , Genes p53/fisiología , Neoplasias Pancreáticas/genética , Transducción de Señal/genética , Adenocarcinoma/tratamiento farmacológico , Animales , Antimetabolitos Antineoplásicos/farmacología , Carcinoma Ductal Pancreático/tratamiento farmacológico , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Resistencia a Antineoplásicos , Humanos , Janus Quinasa 2/metabolismo , Ratones , Mutación , Neoplasias Pancreáticas/tratamiento farmacológico , Fosforilación/genética , Factor de Transcripción STAT3/metabolismo , Gemcitabina
20.
EMBO Mol Med ; 7(3): 315-31, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25680860

RESUMEN

The six transmembrane protein of prostate 2 (STAMP2) is an androgen-regulated gene whose mRNA expression is increased in prostate cancer (PCa). Here, we show that STAMP2 protein expression is increased in human PCa compared with benign prostate that is also correlated with tumor grade and treatment response. We also show that STAMP2 significantly increased reactive oxygen species (ROS) in PCa cells through its iron reductase activity which also depleted NADPH levels. Knockdown of STAMP2 expression in PCa cells inhibited proliferation, colony formation, and anchorage-independent growth, and significantly increased apoptosis. Furthermore, STAMP2 effects were, at least in part, mediated by activating transcription factor 4 (ATF4), whose expression is regulated by ROS. Consistent with in vitro findings, silencing STAMP2 significantly inhibited PCa xenograft growth in mice. Finally, therapeutic silencing of STAMP2 by systemically administered nanoliposomal siRNA profoundly inhibited tumor growth in two established preclinical PCa models in mice. These data suggest that STAMP2 is required for PCa progression and thus may serve as a novel therapeutic target.


Asunto(s)
Proteínas de la Membrana/metabolismo , Estrés Oxidativo , Oxidorreductasas/metabolismo , Neoplasias de la Próstata/patología , Factor de Transcripción Activador 4/metabolismo , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , FMN Reductasa/genética , FMN Reductasa/metabolismo , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Proteínas de la Membrana/genética , Ratones , Oxidorreductasas/genética , Neoplasias de la Próstata/genética , Especies Reactivas de Oxígeno , Trasplante Heterólogo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA