Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Appl Environ Microbiol ; 88(15): e0029022, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35867581

RESUMEN

Sirsoe methanicola, commonly known as the methane ice worm, is the only macrofaunal species known to inhabit the Gulf of Mexico methane hydrates. Little is known about this elusive marine polychaete that can colonize rich carbon and energy reserves. Metagenomic analysis of gut contents and worm fragments predicted diverse metabolic capabilities with the ability to utilize a range of nitrogen, sulfur, and organic carbon compounds through microbial taxa affiliated with Campylobacterales, Desulfobacterales, Enterobacterales, SAR324, Alphaproteobacteria, and Mycoplasmatales. Entomoplasmatales and Chitinivibrionales were additionally identified from extracted full-length 16S rRNA sequences, and read analysis identified 196 bacterial families. Overall, the microbial community appeared dominated by uncultured Sulfurospirillum, a taxon previously considered free-living rather than host-associated. Metagenome-assembled genomes (MAGs) classified as uncultured Sulfurospirillum predicted thiosulfate disproportionation and the reduction of tetrathionate, sulfate, sulfide/polysulfide, and nitrate. Microbial amino acid and vitamin B12 biosynthesis genes were identified in multiple MAGs, suggesting nutritional value to the host. Reads assigned to aerobic or anaerobic methanotrophic taxa were rare. IMPORTANCE Methane hydrates represent vast reserves of natural gas with roles in global carbon cycling and climate change. This study provided the first analysis of metagenomes associated with Sirsoe methanicola, the only polychaete species known to colonize methane hydrates. Previously unrecognized participation of Sulfurospirillum in a gut microbiome is provided, and the role of sulfur compound redox reactions within this community is highlighted. The comparative biology of S. methanicola is of general interest given research into the adverse effects of sulfide production in human gut microbiomes. In addition, taxonomic assignments are provided for nearly 200 bacterial families, expanding our knowledge of microbiomes in the deep sea.


Asunto(s)
Metagenoma , Poliquetos , Animales , Bacterias , Carbono/metabolismo , Humanos , Metano/metabolismo , Filogenia , Poliquetos/metabolismo , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Sulfuros/metabolismo
2.
Int J Mol Sci ; 23(6)2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35328625

RESUMEN

Advanced prostate cancer (PCa) patients with bone metastases are treated with androgen pathway directed therapy (APDT). However, this treatment invariably fails and the cancer becomes castration resistant. To elucidate resistance mechanisms and to provide a more predictive pre-clinical research platform reflecting tumor heterogeneity, we established organoids from a patient-derived xenograft (PDX) model of bone metastatic prostate cancer, PCSD1. APDT-resistant PDX-derived organoids (PDOs) emerged when cultured without androgen or with the anti-androgen, enzalutamide. Transcriptomics revealed up-regulation of neurogenic and steroidogenic genes and down-regulation of DNA repair, cell cycle, circadian pathways and the severe acute respiratory syndrome (SARS)-CoV-2 host viral entry factors, ACE2 and TMPRSS2. Time course analysis of the cell cycle in live cells revealed that enzalutamide induced a gradual transition into a reversible dormant state as shown here for the first time at the single cell level in the context of multi-cellular, 3D living organoids using the Fucci2BL fluorescent live cell cycle tracker system. We show here a new mechanism of castration resistance in which enzalutamide induced dormancy and novel basal-luminal-like cells in bone metastatic prostate cancer organoids. These PDX organoids can be used to develop therapies targeting dormant APDT-resistant cells and host factors required for SARS-CoV-2 viral entry.


Asunto(s)
Neoplasias Óseas/genética , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica/genética , Organoides/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/genética , Andrógenos/farmacología , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Benzamidas/farmacología , Neoplasias Óseas/metabolismo , Neoplasias Óseas/secundario , COVID-19/genética , COVID-19/metabolismo , COVID-19/virología , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Ratones , Nitrilos/farmacología , Feniltiohidantoína/farmacología , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/patología , Receptores Virales/genética , Receptores Virales/metabolismo , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiología , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Trasplante Heterólogo , Internalización del Virus
3.
Front Genet ; 12: 647436, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34194466

RESUMEN

There is hope that genomic information will assist prediction, treatment, and understanding of Alzheimer's disease (AD). Here, using exome data from ∼10,000 individuals, we explore machine learning neural network (NN) methods to estimate the impact of SNPs (i.e., genetic variants) on AD risk. We develop an NN-based method (netSNP) that identifies hundreds of novel potentially protective or at-risk AD-associated SNPs (along with an effect measure); the majority with frequency under 0.01. For case individuals, the number of "protective" (or "at-risk") netSNP-identified SNPs in their genome correlates positively (or inversely) with their age of AD diagnosis and inversely (or positively) with autopsy neuropathology. The effect measure increases correlations. Simulations suggest our results are not due to genetic linkage, overfitting, or bias introduced by netSNP. These findings suggest that netSNP can identify SNPs associated with AD pathophysiology that may assist with the diagnosis and mechanistic understanding of the disease.

4.
Adv Genet (Hoboken) ; 2(1): e10035, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36618441

RESUMEN

Male juvenile zebra finches learn to sing by imitating songs of adult males early in life. The development of the song control circuit and song learning and maturation are highly intertwined processes, involving gene expression, neurogenesis, circuit formation, synaptic modification, and sensory-motor learning. To better understand the genetic and genomic mechanisms underlying these events, we used RNA-Seq to examine genome-wide transcriptomes in the song control nucleus HVC of male juvenile (45 d) and adult (100 d) zebra finches. We report that gene groups related to axon guidance, RNA processing, lipid metabolism, and mitochondrial functions show enriched expression in juvenile HVC compared to the rest of the brain. As juveniles mature into adulthood, massive gene expression changes occur. Expression of genes related to amino acid metabolism, cell cycle, and mitochondrial function is reduced, accompanied by increased and enriched expression of genes with synaptic functions, including genes related to G-protein signaling, neurotransmitter receptors, transport of small molecules, and potassium channels. Unexpectedly, a group of genes with immune system functions is also developmentally regulated, suggesting potential roles in the development and functions of HVC. These data will serve as a rich resource for investigations into the development and function of a neural circuit that controls vocal behavior.

5.
Elife ; 92020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-33331818

RESUMEN

WNT proteins are secreted symmetry breaking signals that interact with cell surface receptors of the FZD family to regulate a multitude of developmental processes. Studying selectivity between WNTs and FZDs has been hampered by the paucity of purified WNT proteins and by their apparent non-selective interactions with the FZD receptors. Here, we describe an engineered protein, called F7L6, comprised of antibody-derived single-chain variable fragments, that selectively binds to human FZD7 and the co-receptor LRP6. F7L6 potently activates WNT/ß-catenin signaling in a manner similar to Wnt3a. In contrast to Wnt3a, F7L6 engages only FZD7 and none of the other FZD proteins. Treatment of human pluripotent stem (hPS) cells with F7L6 initiates transcriptional programs similar to those observed during primitive streak formation and subsequent gastrulation in the mammalian embryo. This demonstrates that selective engagement and activation of FZD7 signaling is sufficient to promote mesendodermal differentiation of hPS cells.


Asunto(s)
Diferenciación Celular/fisiología , Receptores Frizzled/fisiología , Mesodermo/embriología , Células Madre Pluripotentes/fisiología , Western Blotting , Regulación de la Expresión Génica , Humanos , Mesodermo/citología , Mesodermo/crecimiento & desarrollo , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas Recombinantes , Vía de Señalización Wnt/fisiología
6.
Neuron ; 105(4): 630-644.e9, 2020 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-31859031

RESUMEN

Sirtuin 1 (Sirt1) is a NAD+-dependent deacetylase capable of countering age-related neurodegeneration, but the basis of Sirt1 neuroprotection remains elusive. Spinocerebellar ataxia type 7 (SCA7) is an inherited CAG-polyglutamine repeat disorder. Transcriptome analysis of SCA7 mice revealed downregulation of calcium flux genes accompanied by abnormal calcium-dependent cerebellar membrane excitability. Transcription-factor binding-site analysis of downregulated genes yielded Sirt1 target sites, and we observed reduced Sirt1 activity in the SCA7 mouse cerebellum with NAD+ depletion. SCA7 patients displayed increased poly(ADP-ribose) in cerebellar neurons, supporting poly(ADP-ribose) polymerase-1 upregulation. We crossed Sirt1-overexpressing mice with SCA7 mice and noted rescue of neurodegeneration and calcium flux defects. NAD+ repletion via nicotinamide riboside ameliorated disease phenotypes in SCA7 mice and patient stem cell-derived neurons. Sirt1 thus achieves neuroprotection by promoting calcium regulation, and NAD+ dysregulation underlies Sirt1 dysfunction in SCA7, indicating that cerebellar ataxias exhibit altered calcium homeostasis because of metabolic dysregulation, suggesting shared therapy targets.


Asunto(s)
Calcio/fisiología , Homeostasis/fisiología , Neuroprotección/fisiología , Niacinamida/metabolismo , Sirtuina 1/metabolismo , Ataxias Espinocerebelosas/metabolismo , Animales , Línea Celular , Cerebelo/metabolismo , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Técnicas de Cultivo de Órganos , Transducción de Señal/fisiología , Sirtuina 1/genética , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/prevención & control
7.
JAMA Ophthalmol ; 137(10): 1190-1194, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31436842

RESUMEN

IMPORTANCE: Genetic variants associated with primary open-angle glaucoma (POAG) are known to influence disease risk. However, the clinical effect of associated variants individually or in aggregate is not known. Genetic risk scores (GRS) examine the cumulative genetic load by combining individual genetic variants into a single measure, which is assumed to have a larger effect and increased power to detect relevant disease-related associations. OBJECTIVE: To investigate if a GRS that comprised 12 POAG genetic risk variants is associated with age at disease diagnosis. DESIGN, SETTING, AND PARTICIPANTS: A cross-sectional study included individuals with POAG and controls from the Glaucoma Genes and Environment (GLAUGEN) study and the National Eye Institute Glaucoma Human Genetics Collaboration (NEIGHBOR) study. A GRS was formulated using 12 variants known to be associated with POAG, and the alleles associated with increasing risk of POAG were aligned in the case-control sets. In case-only analyses, the association of the GRS with age at diagnosis was analyzed as an estimate of disease onset. Results from cohort-specific analyses were combined with meta-analysis. Data collection started in August 2012 for the NEIGHBOR cohort and in July 2008 for the GLAUGEN cohort and were analyzed starting in March 2018. MAIN OUTCOMES AND MEASURES: Association of a 12 single-nucleotide polymorphism POAG GRS with age at diagnosis in individuals with POAG using linear regression. RESULTS: The GLAUGEN study included 976 individuals with POAG and 1140 controls. The NEIGHBOR study included 2132 individuals with POAG and 2290 controls. For individuals with POAG, the mean (SD) age at diagnosis was 63.6 (9.8) years in the GLAUGEN cohort and 66.0 (13.7) years in the NEIGHBOR cohort. For controls, the mean (SD) age at enrollment was 65.5 (9.2) years in the GLAUGEN cohort and 68.9 (11.4) years in the NEIGHBOR cohort. All study participants were European white. The GRS was strongly associated with POAG risk in case-control analysis (odds ratio per 1-point increase in score = 1.24; 95% CI, 1.21-1.27; P = 3.4 × 10-66). In case-only analyses, each higher GRS unit was associated with a 0.36-year earlier age at diagnosis (ß = -0.36; 95% CI, -0.56 to -0.16; P = 4.0 × 10-4). Individuals in the top 5% of the GRS had a mean (SD) age at diagnosis of 5.2 (12.8) years earlier than those in the bottom 5% GRS (61.4 [12.7] vs 66.6 [12.9] years; P = 5.0 × 10-4). CONCLUSIONS AND RELEVANCE: A higher dose of POAG risk alleles was associated with an earlier age at glaucoma diagnosis. On average, individuals with POAG with the highest GRS had 5.2-year earlier age at diagnosis of disease. These results suggest that a GRS that comprised genetic variants associated with POAG could help identify patients with risk of earlier disease onset impacting screening and therapeutic strategies.

8.
Invest Ophthalmol Vis Sci ; 59(2): 629-636, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29392307

RESUMEN

Purpose: Sex hormones may be associated with primary open-angle glaucoma (POAG), although the mechanisms are unclear. We previously observed that gene variants involved with estrogen metabolism were collectively associated with POAG in women but not men; here we assessed gene variants related to testosterone metabolism collectively and POAG risk. Methods: We used two datasets: one from the United States (3853 cases and 33,480 controls) and another from Australia (1155 cases and 1992 controls). Both datasets contained densely called genotypes imputed to the 1000 Genomes reference panel. We used pathway- and gene-based approaches with Pathway Analysis by Randomization Incorporating Structure (PARIS) software to assess the overall association between a panel of single nucleotide polymorphisms (SNPs) in testosterone metabolism genes and POAG. In sex-stratified analyses, we evaluated POAG overall and POAG subtypes defined by maximum IOP (high-tension [HTG] or normal tension glaucoma [NTG]). Results: In the US dataset, the SNP panel was not associated with POAG (permuted P = 0.77), although there was an association in the Australian sample (permuted P = 0.018). In both datasets, the SNP panel was associated with POAG in men (permuted P ≤ 0.033) and not women (permuted P ≥ 0.42), but in gene-based analyses, there was no consistency on the main genes responsible for these findings. In both datasets, the testosterone pathway association with HTG was significant (permuted P ≤ 0.011), but again, gene-based analyses showed no consistent driver gene associations. Conclusions: Collectively, testosterone metabolism pathway SNPs were consistently associated with the high-tension subtype of POAG in two datasets.


Asunto(s)
Glaucoma de Ángulo Abierto/genética , Redes y Vías Metabólicas/genética , Polimorfismo de Nucleótido Simple , Testosterona/metabolismo , Conjuntos de Datos como Asunto , Femenino , Frecuencia de los Genes , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Presión Intraocular/fisiología , Glaucoma de Baja Tensión/genética , Masculino , Persona de Mediana Edad
9.
Nat Commun ; 8(1): 1034, 2017 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-29044119

RESUMEN

The WNT/ß-catenin signaling pathway is a prominent player in many developmental processes, including gastrulation, anterior-posterior axis specification, organ and tissue development, and homeostasis. Here, we use human pluripotent stem cells (hPSCs) to study the dynamics of the transcriptional response to exogenous activation of the WNT pathway. We describe a mechanism involving the WNT target gene SP5 that leads to termination of the transcriptional program initiated by WNT signaling. Integration of gene expression profiles of wild-type and SP5 mutant cells with genome-wide SP5 binding events reveals that SP5 acts to diminish expression of genes previously activated by the WNT pathway. Furthermore, we show that activation of SP5 by WNT signaling is most robust in cells with developmental potential, such as stem cells. These findings indicate a mechanism by which the developmental WNT signaling pathway reins in expression of transcriptional programs.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Células Madre Pluripotentes/metabolismo , Factores de Transcripción/metabolismo , Proteína Wnt3A/metabolismo , Línea Celular , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica , Humanos , Células Madre Pluripotentes/citología , Factores de Transcripción/genética , Vía de Señalización Wnt , Proteína Wnt3A/genética , beta Catenina/genética , beta Catenina/metabolismo
10.
Eur J Hum Genet ; 25(11): 1261-1267, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28853718

RESUMEN

Primary open-angle glaucoma (POAG) is the most common chronic optic neuropathy worldwide. Epidemiological studies show a robust positive relation between intraocular pressure (IOP) and POAG and modest positive association between IOP and blood pressure (BP), while the relation between BP and POAG is controversial. The International Glaucoma Genetics Consortium (n=27 558), the International Consortium on Blood Pressure (n=69 395), and the National Eye Institute Glaucoma Human Genetics Collaboration Heritable Overall Operational Database (n=37 333), represent genome-wide data sets for IOP, BP traits and POAG, respectively. We formed genome-wide significant variant panels for IOP and diastolic BP and found a strong relation with POAG (odds ratio and 95% confidence interval: 1.18 (1.14-1.21), P=1.8 × 10-27) for the former trait but no association for the latter (P=0.93). Next, we used linkage disequilibrium (LD) score regression, to provide genome-wide estimates of correlation between traits without the need for additional phenotyping. We also compared our genome-wide estimate of heritability between IOP and BP to an estimate based solely on direct measures of these traits in the Erasmus Rucphen Family (ERF; n=2519) study using Sequential Oligogenic Linkage Analysis Routines (SOLAR). LD score regression revealed high genetic correlation between IOP and POAG (48.5%, P=2.1 × 10-5); however, genetic correlation between IOP and diastolic BP (P=0.86) and between diastolic BP and POAG (P=0.42) were negligible. Using SOLAR in the ERF study, we confirmed the minimal heritability between IOP and diastolic BP (P=0.63). Overall, IOP shares genetic basis with POAG, whereas BP has limited shared genetic correlation with IOP or POAG.


Asunto(s)
Presión Sanguínea/genética , Glaucoma de Ángulo Abierto/genética , Presión Intraocular/genética , Desequilibrio de Ligamiento , Femenino , Predisposición Genética a la Enfermedad , Humanos , Masculino
11.
Anal Chem ; 89(16): 8251-8258, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28692290

RESUMEN

Mass spectrometry-based protein analysis has become an important methodology for proteogenomic mapping by providing evidence for the existence of proteins predicted at the genomic level. However, screening and identification of proteins directly on tissue samples, where histological information is preserved, remain challenging. Here we demonstrate that the ambient ionization source, nanospray desorption electrospray ionization (nanoDESI), interfaced with light microscopy allows for protein profiling directly on animal tissues at the microscopic scale. Peptide fragments for mass spectrometry analysis were obtained directly on ganglia of the medicinal leech (Hirudo medicinalis) without in-gel digestion. We found that a hypothetical protein, which is predicted by the leech genome, is highly expressed on the specialized neural cells that are uniquely found in adult sex segmental ganglia. Via this top-down analysis, a post-translational modification (PTM) of tyrosine sulfation to this neuropeptide was resolved. This three-in-one platform, including mass spectrometry, microscopy, and genome mining, provides an effective way for mappings of proteomes under the lens of a light microscope.


Asunto(s)
Espectrometría de Masas/métodos , Microscopía/métodos , Neuropéptidos/química , Proteogenómica/métodos , Secuencia de Aminoácidos , Animales , Ganglios/química , Hirudo medicinalis/química , Neuropéptidos/metabolismo , Procesamiento Proteico-Postraduccional
12.
Menopause ; 24(2): 150-156, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27760082

RESUMEN

OBJECTIVE: Several attributes of female reproductive history, including age at natural menopause (ANM), have been related to primary open-angle glaucoma (POAG). We assembled 18 previously reported common genetic variants that predict ANM to determine their association with ANM or POAG. METHODS: Using data from the Nurses' Health Study (7,143 women), we validated the ANM weighted genetic risk score in relation to self-reported ANM. Subsequently, to assess the relation with POAG, we used data from 2,160 female POAG cases and 29,110 controls in the National Eye Institute Glaucoma Human Genetics Collaboration Heritable Overall Operational Database (NEIGHBORHOOD), which consists of 8 datasets with imputed genotypes to 5.6+ million markers. Associations with POAG were assessed in each dataset, and site-specific results were meta-analyzed using the inverse weighted variance method. RESULTS: The genetic risk score was associated with self-reported ANM (P = 2.2 × 10) and predicted 4.8% of the variance in ANM. The ANM genetic risk score was not associated with POAG (Odds Ratio (OR) = 1.002; 95% Confidence Interval (CI): 0.998, 1.007; P = 0.28). No single genetic variant in the panel achieved nominal association with POAG (P ≥0.20). Compared to the middle 80 percent, there was also no association with the lowest 10 percentile or highest 90 percentile of genetic risk score with POAG (OR = 0.75; 95% CI: 0.47, 1.21; P = 0.23 and OR = 1.10; 95% CI: 0.72, 1.69; P = 0.65, respectively). CONCLUSIONS: A genetic risk score predicting 4.8% of ANM variation was not related to POAG; thus, genetic determinants of ANM are unlikely to explain the previously reported association between the two phenotypes.


Asunto(s)
Factores de Edad , Glaucoma de Ángulo Abierto/genética , Menopausia/genética , Femenino , Variación Genética , Genotipo , Humanos , Persona de Mediana Edad , Medición de Riesgo/métodos , Factores de Riesgo , Estados Unidos
13.
Invest Ophthalmol Vis Sci ; 57(11): 5046-5052, 2016 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-27661856

RESUMEN

PURPOSE: Recent studies indicate that mitochondrial proteins may contribute to the pathogenesis of primary open-angle glaucoma (POAG). In this study, we examined the association between POAG and common variations in gene-encoding mitochondrial proteins. METHODS: We examined genetic data from 3430 POAG cases and 3108 controls derived from the combination of the GLAUGEN and NEIGHBOR studies. We constructed biological-system coherent mitochondrial nuclear-encoded protein gene-sets by intersecting the MitoCarta database with the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. We examined the mitochondrial gene-sets for association with POAG and with normal-tension glaucoma (NTG) and high-tension glaucoma (HTG) subsets using Pathway Analysis by Randomization Incorporating Structure. RESULTS: We identified 22 KEGG pathways with significant mitochondrial protein-encoding gene enrichment, belonging to six general biological classes. Among the pathway classes, mitochondrial lipid metabolism was associated with POAG overall (P = 0.013) and with NTG (P = 0.0006), and mitochondrial carbohydrate metabolism was associated with NTG (P = 0.030). Examining the individual KEGG pathway mitochondrial gene-sets, fatty acid elongation and synthesis and degradation of ketone bodies, both lipid metabolism pathways, were significantly associated with POAG (P = 0.005 and P = 0.002, respectively) and NTG (P = 0.0004 and P < 0.0001, respectively). Butanoate metabolism, a carbohydrate metabolism pathway, was significantly associated with POAG (P = 0.004), NTG (P = 0.001), and HTG (P = 0.010). CONCLUSIONS: We present an effective approach for assessing the contributions of mitochondrial genetic variation to open-angle glaucoma. Our findings support a role for mitochondria in POAG pathogenesis and specifically point to lipid and carbohydrate metabolism pathways as being important.

14.
Invest Ophthalmol Vis Sci ; 57(10): 4528-4535, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27537254

RESUMEN

PURPOSE: Noncoding microRNAs (miRNAs) have been implicated in the pathogenesis of glaucoma. We aimed to identify common variants in miRNA coding genes (MIR) associated with primary open-angle glaucoma (POAG). METHODS: Using the NEIGHBORHOOD data set (3853 cases/33,480 controls with European ancestry), we first assessed the relation between 85 variants in 76 MIR genes and overall POAG. Subtype-specific analyses were performed in high-tension glaucoma (HTG) and normal-tension glaucoma subsets. Second, we examined the expression of miR-182, which was associated with POAG, in postmortem human ocular tissues (ciliary body, cornea, retina, and trabecular meshwork [TM]), using miRNA sequencing (miRNA-Seq) and droplet digital PCR (ddPCR). Third, miR-182 expression was also examined in human aqueous humor (AH) by using miRNA-Seq. Fourth, exosomes secreted from primary human TM cells were examined for miR-182 expression by using miRNA-Seq. Fifth, using ddPCR we compared miR-182 expression in AH between five HTG cases and five controls. RESULTS: Only rs76481776 in MIR182 gene was associated with POAG after adjustment for multiple comparisons (odds ratio [OR] = 1.23, 95% confidence interval [CI]: 1.11-1.42, P = 0.0002). Subtype analysis indicated that the association was primarily in the HTG subset (OR = 1.26, 95% CI: 1.08-1.47, P = 0.004). The risk allele T has been associated with elevated miR-182 expression in vitro. Data from ddPCR and miRNA-Seq confirmed miR-182 expression in all examined ocular tissues and TM-derived exosomes. Interestingly, miR-182 expression in AH was 2-fold higher in HTG patients than nonglaucoma controls (P = 0.03) without controlling for medication treatment. CONCLUSIONS: Our integrative study is the first to associate rs76481776 with POAG via elevated miR-182 expression.


Asunto(s)
Humor Acuoso/metabolismo , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad , Glaucoma de Ángulo Abierto/genética , Presión Intraocular/fisiología , MicroARNs/genética , ARN/genética , Anciano , Anciano de 80 o más Años , Alelos , Exosomas/metabolismo , Femenino , Frecuencia de los Genes , Genotipo , Glaucoma de Ángulo Abierto/metabolismo , Glaucoma de Ángulo Abierto/fisiopatología , Humanos , Masculino , MicroARNs/biosíntesis , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa
15.
F1000Res ; 52016.
Artículo en Inglés | MEDLINE | ID: mdl-26998241

RESUMEN

This message is a response from the ISCB in light of the recent the New England Journal of Medicine (NEJM) editorial around data sharing.

17.
Nat Genet ; 48(2): 189-94, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26752265

RESUMEN

Primary open-angle glaucoma (POAG) is a leading cause of blindness worldwide. To identify new susceptibility loci, we performed meta-analysis on genome-wide association study (GWAS) results from eight independent studies from the United States (3,853 cases and 33,480 controls) and investigated the most significantly associated SNPs in two Australian studies (1,252 cases and 2,592 controls), three European studies (875 cases and 4,107 controls) and a Singaporean Chinese study (1,037 cases and 2,543 controls). A meta-analysis of the top SNPs identified three new associated loci: rs35934224[T] in TXNRD2 (odds ratio (OR) = 0.78, P = 4.05 × 10(-11)) encoding a mitochondrial protein required for redox homeostasis; rs7137828[T] in ATXN2 (OR = 1.17, P = 8.73 × 10(-10)); and rs2745572[A] upstream of FOXC1 (OR = 1.17, P = 1.76 × 10(-10)). Using RT-PCR and immunohistochemistry, we show TXNRD2 and ATXN2 expression in retinal ganglion cells and the optic nerve head. These results identify new pathways underlying POAG susceptibility and suggest new targets for preventative therapies.


Asunto(s)
Ataxina-2/genética , Factores de Transcripción Forkhead/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Glaucoma de Ángulo Abierto/genética , Tiorredoxina Reductasa 2/genética , Humanos , Polimorfismo de Nucleótido Simple
18.
Nat Med ; 22(1): 37-45, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26642438

RESUMEN

Huntington's disease (HD) is a progressive neurodegenerative disorder caused by a CAG trinucleotide repeat expansion in the huntingtin (HTT) gene, which encodes a polyglutamine tract in the HTT protein. We found that peroxisome proliferator-activated receptor delta (PPAR-δ) interacts with HTT and that mutant HTT represses PPAR-δ-mediated transactivation. Increased PPAR-δ transactivation ameliorated mitochondrial dysfunction and improved cell survival of neurons from mouse models of HD. Expression of dominant-negative PPAR-δ in the central nervous system of mice was sufficient to induce motor dysfunction, neurodegeneration, mitochondrial abnormalities and transcriptional alterations that recapitulated HD-like phenotypes. Expression of dominant-negative PPAR-δ specifically in the striatum of medium spiny neurons in mice yielded HD-like motor phenotypes, accompanied by striatal neuron loss. In mouse models of HD, pharmacologic activation of PPAR-δ using the agonist KD3010 improved motor function, reduced neurodegeneration and increased survival. PPAR-δ activation also reduced HTT-induced neurotoxicity in vitro and in medium spiny-like neurons generated from stem cells derived from individuals with HD, indicating that PPAR-δ activation may be beneficial in HD and related disorders.


Asunto(s)
Enfermedad de Huntington/genética , Neostriado/metabolismo , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Animales , Muerte Celular/efectos de los fármacos , Inmunoprecipitación de Cromatina , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Células HEK293 , Humanos , Proteína Huntingtina , Enfermedad de Huntington/metabolismo , Técnicas In Vitro , Células Madre Pluripotentes Inducidas , Ratones , Ratones Transgénicos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Movimiento/efectos de los fármacos , Proteínas del Tejido Nervioso/metabolismo , Neuronas/efectos de los fármacos , PPAR delta/genética , PPAR delta/metabolismo , Piperazinas/farmacología , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores Citoplasmáticos y Nucleares/agonistas , Sulfonamidas/farmacología
19.
Elife ; 42015 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-26554899

RESUMEN

The field of tissue engineering entered a new era with the development of human pluripotent stem cells (hPSCs), which are capable of unlimited expansion whilst retaining the potential to differentiate into all mature cell populations. However, these cells harbor significant risks, including tumor formation upon transplantation. One way to mitigate this risk is to develop expandable progenitor cell populations with restricted differentiation potential. Here, we used a cellular microarray technology to identify a defined and optimized culture condition that supports the derivation and propagation of a cell population with mesodermal properties. This cell population, referred to as intermediate mesodermal progenitor (IMP) cells, is capable of unlimited expansion, lacks tumor formation potential, and, upon appropriate stimulation, readily acquires properties of a sub-population of kidney cells. Interestingly, IMP cells fail to differentiate into other mesodermally-derived tissues, including blood and heart, suggesting that these cells are restricted to an intermediate mesodermal fate.


Asunto(s)
Diferenciación Celular , Mesodermo , Células Madre Pluripotentes/fisiología , Células Madre/fisiología , Técnicas de Cultivo de Célula , Humanos , Ingeniería de Tejidos
20.
Stem Cell Reports ; 3(6): 1015-28, 2014 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-25458891

RESUMEN

Neural progenitor cells (NPCs) derived from human pluripotent stem cells (hPSCs) are a multipotent cell population that is capable of nearly indefinite expansion and subsequent differentiation into the various neuronal and supporting cell types that comprise the CNS. However, current protocols for differentiating NPCs toward neuronal lineages result in a mixture of neurons from various regions of the CNS. In this study, we determined that endogenous WNT signaling is a primary contributor to the heterogeneity observed in NPC cultures and neuronal differentiation. Furthermore, exogenous manipulation of WNT signaling during neural differentiation, through either activation or inhibition, reduces this heterogeneity in NPC cultures, thereby promoting the formation of regionally homogeneous NPC and neuronal cultures. The ability to manipulate WNT signaling to generate regionally specific NPCs and neurons will be useful for studying human neural development and will greatly enhance the translational potential of hPSCs for neural-related therapies.


Asunto(s)
Diferenciación Celular , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Vía de Señalización Wnt , Biomarcadores , Análisis por Conglomerados , Perfilación de la Expresión Génica , Humanos , Inmunofenotipificación , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...