RESUMEN
We report the high-resolution NMR solution-state structure of an intramolecular G-quadruplex with a diagonal loop of ten nucleotides. The G-quadruplex is formed by a 34-nt DNA sequence, d[CAG3T2A2G3TATA2CT3AG4T2AG3T2], named UpsB-Q-1. This sequence is found within promoters of the var genes of Plasmodium falciparum, which play a key role in malaria pathogenesis and evasion of the immune system. The [3+1]-hybrid G-quadruplex formed under physiologically relevant conditions exhibits a unique equilibrium between two structures, both stabilized by base stacking and non-canonical hydrogen bonding. Unique equilibrium of the two closely related 3D structures originates from a North-South repuckering of deoxyribose moiety of residue T27 in the lateral loop. Besides the 12 guanines involved in three G-quartets, most residues in loop regions are involved in interactions at both G-quartet-loop interfaces.
Asunto(s)
G-Cuádruplex , Enlace de Hidrógeno , Plasmodium falciparum , Regiones Promotoras Genéticas , Plasmodium falciparum/química , Plasmodium falciparum/genética , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Resonancia Magnética Nuclear Biomolecular , Espectroscopía de Resonancia MagnéticaRESUMEN
BACKGROUND: The use of simple and hybrid fragmentation techniques for the identification of molecules in tandem mass spectrometry provides different and complementary information on the structure of molecules. Nevertheless, these techniques have not been as widely explored for oligonucleotides as for peptides or proteins. The analysis of microRNAs (miRNAs) warrants special attention, given their regulatory role and their relationship with several diseases. The application of different fragmentation techniques will be very interesting for their identification. RESULTS: Four synthetic miRNAs and a DNA sequence were fragmented in an ESI-FT-ICR mass spectrometer using both simple and hybrid fragmentation techniques: CID, nETD followed by CID, IRMPD, and, for the first time, nETD in combination with IRMPD. The main fragmentation channel was base loss. The use of nETD-IRMPD resulted in d/z, a/w, and c/y ions at higher intensities. Moreover, nETD-IRMPD provided high sequence coverage and low internal fragmentation. Native MS analysis revealed that only miR159 and the DNA sequence formed stable dimers under physiological ionic strength. The use of organic co-solvents or additives resulted in a lower sequence coverage due to lesser overall ionization efficiency. NOVELTY: This work demonstrates that the combination of nETD and IRMPD for miRNA fragmentation constitutes a suitable alternative to common fragmentation methods. This strategy resulted in efficient fragmentation of [miRNA]5- using low irradiation times and fewer internal fragments while ensuring a high sequence coverage. Moreover, given that such low charge states predominate upon spraying in physiological-like conditions, native MS can be applied for obtaining structural information at the same time.
Asunto(s)
MicroARNs , Electrones , Espectrofotometría Infrarroja , Espectrometría de Masas en Tándem/métodos , ADN/genéticaRESUMEN
Streptococcus gordonii is a Gram-positive bacterial species that typically colonizes the human oral cavity, but can also cause local or systemic diseases. Serine-rich repeat (SRR) glycoproteins exposed on the S. gordonii bacterial surface bind to sialylated glycans on human salivary, plasma, and platelet glycoproteins, which may contribute to oral colonization as well as endocardial infections. Despite a conserved overall domain organization of SRR adhesins, the Siglec-like binding regions (SLBRs) are highly variable, affecting the recognition of a wide range of sialoglycans. SLBR-N from the SRR glycoprotein of S. gordonii UB10712 possesses the remarkable ability to recognize complex core 2 O-glycans. We here employed a multidisciplinary approach, including flow cytometry, native mass spectrometry, isothermal titration calorimetry, NMR spectroscopy from both protein and ligand perspectives, and computational methods, to investigate the ligand specificity and binding preferences of SLBR-N when interacting with mono- and disialylated core 2 O-glycans. We determined the means by which SLBR-N preferentially binds branched α2,3-disialylated core 2 O-glycans: a selected conformation of the 3'SLn branch is accommodated into the main binding site, driving the sTa branch to further interact with the protein. At the same time, SLBR-N assumes an open conformation of the CD loop of the glycan-binding pocket, allowing one to accommodate the entire complex core 2 O-glycan. These findings establish the basis for the generation of novel tools for the detection of specific complex O-glycan structures and pave the way for the design and development of potential therapeutics against streptococcal infections.
RESUMEN
Amyloid aggregation of the intrinsically disordered protein (IDP) tau is involved in several diseases, called tauopathies. Some tauopathies can be inherited due to mutations in the gene encoding tau, which might favor the formation of tau amyloid fibrils. This work aims at deciphering the mechanisms through which the disease-associated single-point mutations promote amyloid formation. We combined biochemical and biophysical characterization, notably, small-angle X-ray scattering (SAXS), to study six different FTDP-17 derived mutations. We found that the mutations promote aggregation to different degrees and can modulate tau conformational ensembles, intermolecular interactions, and liquid-liquid phase separation propensity. In particular, we found a good correlation between the aggregation lag time of the mutants and their radii of gyration. We show that mutations disfavor intramolecular protein interactions, which in turn favor extended conformations and promote amyloid aggregation. This work proposes a new connection between the structural features of tau monomers and their propensity to aggregate, providing a novel assay to evaluate the aggregation propensity of IDPs.
RESUMEN
G-quadruplexes (G4s) are secondary structures formed by guanine-rich oligonucleotides involved in various biological processes. However, characterizing G4s is challenging, because of their structural polymorphism. Here, we establish how hydrogen-deuterium exchange native mass spectrometry (HDX/MS) can help to characterize the G4 structures and dynamics in solution. We correlated the time range of G4 exchange to the number of guanines involved in the inner and outer tetrads. We also established relationships among exchange rates, numbers of tetrads and bound cations, and stability. The use of HDX/native MS allows for the determination of tetrads formed and assessment of G4 stability at a constant temperature. A key finding is that stable G4s exchange through local fluctuations (EX2 exchange), whereas less stable G4s also undergo exchange through partial or complete unfolding (EX1 exchange). Deconvolution of the bimodal isotope distributions resulting from EX1 exchange provides valuable insight into the kinetics of folding and unfolding processes and allows one to detect and characterize transiently unfolded intermediates, even if scarcely populated. HDX/native MS thus represents a powerful tool for a more comprehensive exploration of the folding landscapes of G4s.
Asunto(s)
G-Cuádruplex , Hidrógeno , Hidrógeno/química , Deuterio , Medición de Intercambio de Deuterio/métodos , Espectrometría de Masas/métodos , ADNRESUMEN
Eight [Ru(bpy)2L]2+ and three [Ru(phen)2L]2+complexes (where bpy = 2,2'-bipyridine and phen = 1,10-phenanthroline are ancillary ligands, and L = a polypyridyl experimental ligand) were investigated for their G-quadruplex binding abilities. Fluorescence resonance energy transfer melting assays were used to screen these complexes for their ability to selectively stabilize human telomeric DNA variant, Tel22. The best G-quadruplex stabilizers were further characterized for their binding properties (binding constant and stoichiometry) using UV-vis, fluorescence spectroscopy, and mass spectrometry. The ligands' ability to alter the structure of Tel22 was determined via circular dichroism and PAGE studies. We identified me2allox as the experimental ligand capable of conferring excellent stabilizing ability and good selectivity to polypyridyl Ru(II) complexes. Replacing bpy by phen did not significantly impact interactions with Tel22, suggesting that binding involves mostly the experimental ligand. However, using a particular ancillary ligand can help fine-tune G-quadruplex-binding properties of Ru(II) complexes. Finally, the fluorescence "light switch" behavior of all Ru(II) complexes in the presence of Tel22 G-quadruplex was explored. All Ru(II) complexes displayed "light switch" properties, especially [Ru(bpy)2(diamino)]2+, [Ru(bpy)2(dppz)]2+, and [Ru(bpy)2(aap)]2+. Current work sheds light on how Ru(II) polypyridyl complexes interact with human telomeric DNA with possible application in cancer therapy or G-quadruplex sensing.
Asunto(s)
G-Cuádruplex , Rutenio , Humanos , Rutenio/química , Ligandos , ADN/química , Transferencia Resonante de Energía de FluorescenciaRESUMEN
Native ion mobility mass spectrometry is potentially useful for the biophysical characterization of proteins, as the electrospray charge state distribution and the collision cross section distribution depend on their solution conformation. We examine here the charging and gas-phase conformation of multi-domain therapeutic proteins comprising globular domains tethered by disordered linkers. The charge and collision cross section distributions are multimodal, suggesting several conformations in solution, as confirmed by solution hydrogen/deuterium exchange. The most intriguing question is the ionization mechanism of these structures: a fraction of the population does not follow the charged residue mechanism but cannot ionize by pure chain ejection either. We deduce that a hybrid mechanism is possible, wherein globular domains are ejected one at a time from a parent droplet. The charge vs solvent accessible surface area correlations of denatured and intrinsically disordered proteins are also compatible with this "bead ejection mechanism", which we propose as a general tenet of biomolecule electrospray.
Asunto(s)
Proteínas Intrínsecamente Desordenadas , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masa por Ionización de Electrospray/métodos , Hidrógeno , Solventes , Conformación ProteicaRESUMEN
G-quadruplexes (G4s), secondary structures adopted by guanine-rich DNA and RNA sequences, are implicated in numerous biological processes and have been suggested as potential drug targets. Accordingly, there is an increasing interest in developing high-throughput methods that allow the generation of congeneric series of G4-targeting molecules ("ligands") and investigating their interactions with the targets. We have developed an operationally simple method of parallel synthesis to generate "ready-to-screen" libraries of cationic acylhydrazones, a motif that we have previously identified as a promising scaffold for potent, biologically active G4 ligands. Combined with well-established screening techniques, such as fluorescence melting, this method enables the rapid synthesis and screening of combinatorial libraries of potential G4 ligands. Following this protocol, we synthesized a combinatorial library of 90 bis(acylhydrazones) and screened it against five different nucleic acid structures. This way, we were able to analyze the structure-activity relationships within this series of G4 ligands, and identified three novel promising ligands whose interactions with G4-DNAs of different topologies were studied in detail by a combination of several biophysical techniques, including native mass spectrometry, and molecular modeling.
Asunto(s)
G-Cuádruplex , ADN/química , Modelos Moleculares , Ligandos , Relación Estructura-ActividadRESUMEN
The syntheses of novel 2,4-bis[(substituted-aminomethyl)phenyl]phenylquinazolines 12 and 2,4-bis[(substituted-aminomethyl)phenyl]phenylquinolines 13 are reported here in six steps starting from various halogeno-quinazoline-2,4-(1H,3H)-diones or substituted anilines. The antiproliferative activities of the products were determined in vitro against a panel of breast (MCF-7 and MDA-MB-231), human adherent cervical (HeLa and SiHa), and ovarian (A2780) cell lines. Disubstituted 6- and 7-phenyl-bis(3-dimethylaminopropyl)aminomethylphenyl-quinazolines 12b, 12f, and 12i displayed the most interesting antiproliferative activities against six human cancer cell lines. In the series of quinoline derivatives, 6-phenyl-bis(3-dimethylaminopropyl)aminomethylphenylquinoline 13a proved to be the most active. G-quadruplexes (G4) stacked non-canonical nucleic acid structures found in specific G-rich DNA, or RNA sequences in the human genome are considered as potential targets for the development of anticancer agents. Then, as small aza-organic heterocyclic derivatives are well known to target and stabilize G4 structures, their ability to bind G4 structures have been determined through FRET melting, circular dichroism, and native mass spectrometry assays. Finally, telomerase inhibition ability has been also assessed using the MCF-7 cell line.
RESUMEN
A series of novel 2,9-bis[(substituted-aminomethyl)]-4,7-phenyl-1,10-phenanthroline derivatives was designed, synthesized, and evaluated in vitro against three protozoan parasites (Plasmodium falciparum, Leishmania donovani and Trypanosoma brucei brucei). Pharmacological results showed antiprotozoal activity with IC50 values in the sub and µM range. In addition, the in vitro cytotoxicity of these original molecules was assessed with human HepG2 cells. The substituted diphenylphenanthroline 1l was identified as the most potent antimalarial derivative with a ratio of cytotoxic to antiparasitic activities of 505.7 against the P. falciparum CQ-resistant strain W2. Against the promastigote forms of L. donovani, the phenanthrolines 1h, 1j, 1n and 1o were the most active with IC50 from 2.52 to 4.50 µM. The phenanthroline derivative 1o was also identified as the most potent trypanosomal candidate with a selectivity index (SI) of 91 on T. brucei brucei strain. FRET melting and native mass spectrometry experiments evidenced that the nitrogen heterocyclic derivatives bind the telomeric G-quadruplexes of P. falciparum and Trypanosoma. Moreover, as the telomeres of the parasites P. falciparum and Trypanosoma could be considered to be possible targets of this kind of nitrogen heterocyclic derivatives, their potential ability to stabilize the parasitic telomeric G-quadruplexes have been determined through the FRET melting assay and by native mass spectrometry.
RESUMEN
When sprayed from physiological ionic strength, nucleic acids typically end up with low levels of charging and in compact conformations. Increasing the electrospray negative charging of nucleic acids while preserving the native noncovalent interactions can help distinguish solution folds by ion mobility mass spectrometry. To get fundamental insight into the supercharging mechanisms of nucleic acids in the negative mode, we studied model G-quadruplex structures and single-strand controls in 100 mM ammonium acetate. We found that adding 0.4% of propylene carbonate, 0.4% of sulfolane, or 0.1% of m-NBA induces native supercharging. However, although 0.4% of m-NBA shows the highest supercharging ability, it induces unwanted unfolding of solution-folded G-quadruplexes. The supercharging effect resembles the effect of lowering the ionic strength, and this could be explained by partial neutralization of the ampholytes when droplets become more concentrated in their nonaqueous components. The supercharging ability ranks PC < sulfolane < m-NBA. m-NBA adducts to G-quadruplexes with high-charge states confirm that the supercharging agent interacts directly with DNA. Surprisingly, in the presence of supercharging agents, the most negatively-charged states also bear more alkali metal ion adducts. Larger droplets are known to result in more counterion adduction, so our results are consistent with native supercharging conditions producing larger droplets evaporating to a charged residue. However, when negative charge carriers from the electrolyte become too rare, chain ejection accompanied by denaturation, and hence non-native supercharging, can become predominant.
Asunto(s)
Ácidos Nucleicos , Espectrometría de Masa por Ionización de Electrospray , Conformación Proteica , Espectrometría de Masa por Ionización de Electrospray/métodos , Tiofenos/químicaRESUMEN
Human telomeric G-quadruplex DNA structures are attractive anticancer drug targets, but the target's polymorphism complicates the drug design: different ligands prefer different folds, and very few complexes have been solved at high resolution. Here we report that Phen-DC3 , one of the most prominent G-quadruplex ligands in terms of high binding affinity and selectivity, causes dTAGGG(TTAGGG)3 to completely change its fold in KCl solution from a hybrid-1 to an antiparallel chair-type structure, wherein the ligand intercalates between a two-quartet unit and a pseudo-quartet, thereby ejecting one potassium ion. This unprecedented high-resolution NMR structure shows for the first time a true ligand intercalation into an intramolecular G-quadruplex.
Asunto(s)
Antineoplásicos , G-Cuádruplex , ADN/química , Humanos , Ligandos , Potasio/química , TelómeroRESUMEN
Amphipathic water-soluble helices formed from synthetic peptides or foldamers are promising building blocks for the creation of self-assembled architectures with non-natural shapes and functions. While rationally designed artificial quaternary structures such as helix bundles have been shown to contain preformed cavities suitable for guest binding, there are no examples of adaptive binding of guest molecules by such assemblies in aqueous conditions. We have previously reported a foldamer 6-helix bundle that contains an internal nonpolar cavity able to bind primary alcohols as guest molecules. Here, we show that this 6-helix bundle can also interact with larger, more complex guests such as n-alkyl glycosides. X-ray diffraction analysis of co-crystals using a diverse set of guests together with solution and gas-phase studies reveals an adaptive binding mode whereby the apo form of the 6-helix bundle undergoes substantial conformational change to accommodate the hydrocarbon chain in a manner reminiscent of glycolipid transfer proteins in which the cavity forms upon lipid uptake. The dynamic nature of the self-assembling and molecular recognition processes reported here marks a step forward in the design of functional proteomimetic molecular assemblies.
Asunto(s)
Glucolípidos , Agua , Glicósidos , Péptidos/química , ProteínasRESUMEN
The combination between ion mobility mass spectrometry and molecular dynamics simulations is demonstrated for the first time to afford valuable information on structural changes undergone by dendriplexes containing ds-DNA and low-generation dendrimers when transferred from the solution to the gas phase. Dendriplex ions presenting 1:1 and 2:1 stoichiometries are identified using mass spectrometry experiments, and the collision cross sections (CCS) of the 1:1 ions are measured using drift time ion mobility experiments. Structural predictions using Molecular Dynamics (MD) simulations showed that gas-phase relevant structures, i.e., with a good match between the experimental and theoretical CCS, are generated when the global electrospray process is simulated, including the solvent molecule evaporation, rather than abruptly transferring the ions from the solution to the gas phase. The progressive migration of ammonium groups (either NH4+ from the buffer or protonated amines of the dendrimer) into the minor and major grooves of DNA all along the evaporation processes is shown to compact the DNA structure by electrostatic and hydrogen-bond interactions. The subsequent proton transfer from the ammonium (NH4+ or protonated amino groups) to the DNA phosphate groups allows creation of protonated phosphate/phosphate hydrogen bonds within the compact structures. MD simulations showed major structural differences between the dendriplexes in solution and in the gas phase, not only due to the loss of the solvent but also due to the proton transfers and the huge difference between the solution and gas-phase charge states.
Asunto(s)
Compuestos de Amonio , Simulación de Dinámica Molecular , Iones/química , Fosfatos , Protones , SolventesRESUMEN
Aromatic foldamers are promising for applications such as molecular recognition and molecular machinery. For many of these, defect free, 2D-crystaline monolayers are needed. To this end, submonolayers were prepared in ultra-high vacuum (UHV) on Ag(111) via electrospray controlled ion beam deposition (ES-CIBD). On the surface, the unfolded state is unambiguously identified by real-space single-molecule imaging using scanning tunnelling microscopy (STM) and it is found to assemble in regular structures.
Asunto(s)
Amidas , Microscopía de Túnel de Rastreo , Amidas/química , Conformación Molecular , NanotecnologíaRESUMEN
Drift tube ion mobility spectrometry (DTIMS) coupled with mass spectrometry was used to determine the collision cross-sections (DTCCS) of polyoxometalate anions in helium and nitrogen. As the geometry of the ion, more than its mass, determines the collision cross-section with a given drift gas molecule, we found that both Lindqvist ions Mo6O192- and W6O192- had a DTCCSHe value of 103 ± 2 Å2, and both Keggin ions PMo12O403- and PW12O403- had a DTCCSHe value of 170 ± 2 Å2. Similarly, ion mobility experiments in N2 led to DTCCSN2 values of 223 ± 2 Å2 and 339 ± 4 Å2 for Lindqvist and Keggin anions, respectively. Using optimized structures and partial charges determined from density functional theory calculations, followed by CCS calculations via the trajectory method, we determined Lennard-Jones 6-12 potential parameters ε, σ of 5.60 meV, 3.50 Å and 3.75 meV, 4.40 Å for both Mo and W atoms interacting with He and N2, respectively. These parameters reproduced the CCS of polyoxometalates within 2% accuracy.
RESUMEN
Introduction: Alzheimer's disease (AD) is characterized by neurotoxic immuno-inflammation concomitant with cytotoxic oligomerization of amyloid beta (Aß) and tau, culminating in concurrent, interdependent immunopathic and proteopathic pathogeneses. Methods: We performed a comprehensive series of in silico, in vitro, and in vivo studies explicitly evaluating the atomistic-molecular mechanisms of cytokine-mediated and Aß-mediated neurotoxicities in AD. Next, 471 new chemical entities were designed and synthesized to probe the pathways identified by these molecular mechanism studies and to provide prototypic starting points in the development of small-molecule therapeutics for AD. Results: In response to various stimuli (e.g., infection, trauma, ischemia, air pollution, depression), Aß is released as an early responder immunopeptide triggering an innate immunity cascade in which Aß exhibits both immunomodulatory and antimicrobial properties (whether bacteria are present, or not), resulting in a misdirected attack upon "self" neurons, arising from analogous electronegative surface topologies between neurons and bacteria, and rendering them similarly susceptible to membrane-penetrating attack by antimicrobial peptides (AMPs) such as Aß. After this self-attack, the resulting necrotic (but not apoptotic) neuronal breakdown products diffuse to adjacent neurons eliciting further release of Aß, leading to a chronic self-perpetuating autoimmune cycle. AD thus emerges as a brain-centric autoimmune disorder of innate immunity. Based upon the hypothesis that autoimmune processes are susceptible to endogenous regulatory processes, a subsequent comprehensive screening program of 1137 small molecules normally present in human brain identified tryptophan metabolism as a regulator of brain innate immunity and a source of potential endogenous anti-AD molecules capable of chemical modification into multi-site therapeutic modulators targeting AD's complex immunopathic-proteopathic pathogenesis. Discussion: Conceptualizing AD as an autoimmune disease, identifying endogenous regulators of this autoimmunity, and designing small molecule drug-like analogues of these endogenous regulators represents a novel therapeutic approach for AD.
RESUMEN
Glycosyl conjugation to drugs is a strategy being used to take advantage of glucose transporters (GLUT) overexpression in cancer cells in comparison with non-cancerous cells. Its extension to the conjugation of drugs to thiosugars tries to exploit their higher biostability when compared to O-glycosides. Here, we have synthesized a series of thiosugar naphthalene diimide conjugates as G-quadruplex ligands and have explored modifications of the amino sidechain comparing dimethyl amino and morpholino groups. Then, we studied their antiproliferative activity in colon cancer cells, and their antiparasitic activity in T. brucei and L. major parasites, together with their ability to bind quadruplexes and their cellular uptake and location. We observed higher toxicity for the sugar-NDI-NMe2 derivatives than for the sugar-NDI-morph compounds, both in mammalian cells and in parasites. Our experiments indicate that a less efficient binding to quadruplexes and a worse cellular uptake of the carb-NDI-morph derivatives could be the reasons for these differences. We found small variations in cytotoxicity between O-carb-NDIs and S-carb-NDIs, except against non-cancerous human fibroblasts MRC-5, where thiosugar-NDIs tend to be less toxic. This leads to a notable selectivity for ß-thiomaltosyl-NDI-NMe212 (9.8 fold), with an IC50 of 0.3 µM against HT-29 cells. Finally, the antiparasitic activity observed for the carb-NDI-NMe2 derivatives against T. brucei was in the nanomolar range with a good selectivity index in the range of 30- to 69- fold.
Asunto(s)
G-Cuádruplex , Tioazúcares , Animales , Antiparasitarios/farmacología , Humanos , Imidas/química , Imidas/farmacología , Ligandos , NaftalenosRESUMEN
Nucleic acids have been among the first targets for antitumor drugs and antibiotics. With the unveiling of new biological roles in regulation of gene expression, specific DNA and RNA structures have become very attractive targets, especially when the corresponding proteins are undruggable. Biophysical assays to assess target structure as well as ligand binding stoichiometry, affinity, specificity, and binding modes are part of the drug development process. Mass spectrometry offers unique advantages as a biophysical method owing to its ability to distinguish each stoichiometry present in a mixture. In addition, advanced mass spectrometry approaches (reactive probing, fragmentation techniques, ion mobility spectrometry, ion spectroscopy) provide more detailed information on the complexes. Here, we review the fundamentals of mass spectrometry and all its particularities when studying noncovalent nucleic acid structures, and then review what has been learned thanks to mass spectrometry on nucleic acid structures, self-assemblies (e.g., duplexes or G-quadruplexes), and their complexes with ligands.
Asunto(s)
G-Cuádruplex , Ácidos Nucleicos , Ligandos , Espectrometría de Masas/métodos , Ácidos Nucleicos/química , Proteínas/química , Espectrometría de Masa por Ionización de Electrospray/métodosRESUMEN
While studying nucleic acids to reveal the weak interactions responsible for their three-dimensional structure and for their interactions with drugs, we also contributed to the field of biomolecular mass spectrometry, both in terms of fundamental understanding and with new methodological developments. A first goal was to develop mass spectrometry approaches to detect noncovalent interactions between antitumor drugs and their DNA target. Twenty years ago, our attention turned toward specific DNA structures such as the G-quadruplex (a structure formed by guanine-rich strands). Mass spectrometry allows one to discern which molecules interact with one another by measuring the masses of the complexes, and quantify the affinities by measuring their abundance. The most important findings came from unexpected masses. For example, we showed the formation of higher- or lower-order structures by G-quadruplexes used in traditional biophysical assays. We also derived complete thermodynamic and kinetic description of G-quadruplex folding pathways by measuring cation binding, one at a time. Getting quantitative information requires accounting for nonspecific adduct formation and for the response factors of the different molecular forms. With these caveats in mind, the approach is now mature enough for routine biophysical characterization of nucleic acids. A second goal is to obtain more detailed structural information on each of the complexes separated by the mass spectrometer. One such approach is ion mobility spectrometry, and even today the challenge lies in the structural interpretation of the measurements. We showed that, although structures such as G-quadruplexes are well-preserved in the MS conditions, double helices actually get more compact in the gas phase. These major rearrangements forced us to challenge comfortable assumptions. Further work is still needed to generalize how to deduce structures in solution from ion mobility spectrometry data and, in particular, how to account for the electrospray charging mechanisms and for ion internal energy effects. These studies also called for complementary approaches to ion mobility spectrometry. Recently, we applied isotope exchange labeling mass spectrometry to characterize nucleic acid structures for the first time, and we reported the first ever circular dichroism ion spectroscopy measurement on mass-selected trapped ions. Circular dichroism plays a key role in assigning the stacking topology, and our new method now opens the door to characterizing a wide variety of chiral molecules by mass spectrometry. In summary, advanced mass spectrometry approaches to characterize gas-phase structures work well for G-quadruplexes because they are stiffened by inner cations. The next objective will be to generalize these methodologies to a wider range of nucleic acid structures.