Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(7): e28420, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38590903

RESUMEN

Organoids are 3-dimensional (3D) self-assembled structures capable of replicating the microanatomy and physiology of the epithelial components of their organ of origin. Adult stem cell (ASC) derived organoids from the liver have previously been shown to differentiate into primarily mature cholangiocytes, and their partial differentiation into functional hepatocytes can be promoted using specific media compositions. While full morphological differentiation of mature hepatocytes from ASCs has not yet been reported for any species, the functional differentiation can be approximated using various media compositions. Six differentiation media formulations from published studies on hepatic organoids were used for the differentiation protocol. Target species for these protocols were humans, mice, cats, and dogs, and encompassed various combinations and concentrations of four major hepatocyte media components: Bone morphogenetic protein 7 (BMP7), Fibroblast Growth Factor 19 (FGF19), Dexamethasone (Dex), and Gamma-Secretase Inhibitor IX (DAPT). Additionally, removing R-spondin from basic organoid media has previously been shown to drive the differentiation of ASC into mature hepatocytes. Differentiation media (N = 20) were designed to encompass combinations of the four major hepatocyte media components. The preferred differentiation of ASC-derived organoids from liver tissue into mature hepatocytes over cholangiocytes was confirmed by albumin production in the culture supernatant. Out of the twenty media compositions tested, six media resulted in the production of the highest amounts of albumin in the supernatant of the organoids. The cell lines cultured using these six media were further characterized via histological staining, transmission electron microscopy, RNA in situ hybridization, analysis of gene expression patterns, immunofluorescence, and label-free proteomics. The results indicate that preferential hepatocyte maturation from canine ADC-derived organoids from liver tissue is mainly driven by Dexamethasone and DAPT components. FGF19 did not enhance organoid differentiation but improved cell culture survival. Furthermore, we confirm that removing R-spondin from the media is crucial for establishing mature hepatic organoid cultures.

2.
Vet Med Sci ; 10(2): e1403, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38419297

RESUMEN

BACKGROUND: Albuminuria, an important marker of decreased kidney function in chronic kidney disease (CKD), is not routinely used for CKD detection or proteinuria appearance. Its relationships with biochemical parameters and blood pressure in dogs are poorly understood. OBJECTIVES: This study aimed to evaluate the relationship of albuminuria with various CKD markers, its correlation with the urinary protein to creatinine ratio (UPC), and hypertension in dogs with early stages of CKD. It also sought to determine the usability of the urinary albumin to creatinine ratio (UAC) for CKD screening. METHODS: The study reviewed records of 102 dogs, categorising them into four groups based on disease status. UAC and UPC ratio, biochemistry and haematology variables, age, and systolic blood pressure were determined. RESULTS: The Pearson's correlation coefficient between log-transformed values of UPC and UAC was r = 0.902 (95% CI: 0.87 to 0.93). Median UAC ratio values were 2.1 mg/g for the Healthy control group (n = 17), 54.2 mg/g for early stages CKD (n = 42), 5.8 mg/g for Acute sick control (n = 30), and 104 mg/g for Chronic sick control (n = 13). Thresholding UAC ratio as an indicator for impaired kidney function with the threshold of 10 mg/g (established based on the receiver operating characteristic curve) had a sensitivity 81.8%, specificity of 89.4%, positive predictive value (PPV) 90%, and negative predictive value (NPV) 80.1%. The correlation of UAC with biochemistry and haematology variables was statistically significant; for SDMA (µg/L), it was r = 0.566 and for other variables, it was weak to moderate. UAC was markedly elevated in cases of severe hypertension. CONCLUSIONS: UAC ratio was significantly different among dogs with impaired and not impaired kidney function. The correlation strength for the UAC and UPC ratios was high. UAC ratio may be a promising marker for proteinuria analysis in dogs with CKD or other kidney function alterations.


Asunto(s)
Enfermedades de los Perros , Hipertensión , Insuficiencia Renal Crónica , Perros , Animales , Albuminuria/veterinaria , Albuminuria/diagnóstico , Albuminuria/orina , Creatinina/orina , Insuficiencia Renal Crónica/veterinaria , Insuficiencia Renal Crónica/orina , Proteinuria/veterinaria , Hipertensión/orina , Hipertensión/veterinaria , Enfermedades de los Perros/diagnóstico
3.
Commun Biol ; 7(1): 218, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38388772

RESUMEN

Painted turtles are remarkable for their freeze tolerance and supercooling ability along with their associated resilience to hypoxia/anoxia and oxidative stress, rendering them an ideal biomedical model for hypoxia-induced injuries (including strokes), tissue cooling during surgeries, and organ cryopreservation. Yet, such research is hindered by their seasonal reproduction and slow maturation. Here we developed and characterized adult stem cell-derived turtle liver organoids (3D self-assembled in vitro structures) from painted, snapping, and spiny softshell turtles spanning ~175My of evolution, with a subset cryopreserved. This development is, to the best of our knowledge, a first for this vertebrate Order, and complements the only other non-avian reptile organoids from snake venom glands. Preliminary characterization, including morphological, transcriptomic, and proteomic analyses, revealed organoids enriched in cholangiocytes. Deriving organoids from distant turtles and life stages demonstrates that our techniques are broadly applicable to chelonians, permitting the development of functional genomic tools currently lacking in herpetological research. Such platform could potentially support studies including genome-to-phenome mapping, gene function, genome architecture, and adaptive responses to climate change, with implications for ecological, evolutionary, and biomedical research.


Asunto(s)
Hígado , Organoides , Tortugas , Animales , Genoma , Hipoxia/genética , Proteómica , Tortugas/fisiología , Organoides/fisiología
4.
Int J Mol Sci ; 25(2)2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38255775

RESUMEN

Preclinical biomedical research is limited by the predictiveness of in vivo and in vitro models. While in vivo models offer the most complex system for experimentation, they are also limited by ethical, financial, and experimental constraints. In vitro models are simplified models that do not offer the same complexity as living animals but do offer financial affordability and more experimental freedom; therefore, they are commonly used. Traditional 2D cell lines cannot fully simulate the complexity of the epithelium of healthy organs and limit scientific progress. The One Health Initiative was established to consolidate human, animal, and environmental health while also tackling complex and multifactorial medical problems. Reverse translational research allows for the sharing of knowledge between clinical research in veterinary and human medicine. Recently, organoid technology has been developed to mimic the original organ's epithelial microstructure and function more reliably. While human and murine organoids are available, numerous other organoids have been derived from traditional veterinary animals and exotic species in the last decade. With these additional organoid models, species previously excluded from in vitro research are becoming accessible, therefore unlocking potential translational and reverse translational applications of animals with unique adaptations that overcome common problems in veterinary and human medicine.


Asunto(s)
Células Madre Adultas , Investigación Biomédica , Salud Única , Adulto , Humanos , Animales , Ratones , Investigación Biomédica Traslacional , Organoides
5.
Vet Sci ; 10(7)2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37505823

RESUMEN

This study aimed to assess the morphometry of enterocytes as well as the goblet cell-to-enterocyte ratio in different intestinal segments of dogs with chronic enteropathies (CE). Histopathological intestinal samples from 97 dogs were included in the study (19 healthy juveniles, 21 healthy adults, 24 dogs with protein-losing enteropathy (PLE), and 33 CE dogs without PLE). Healthy adult small intestinal enterocytes showed progressively reduced epithelial cell height in the aboral direction, while juvenile dogs showed progressively increased epithelial cell height in the aboral direction. CE dogs had increased epithelial cell height in the duodenum, while PLE dogs had decreased epithelial cell heights compared to healthy adult dogs. Both the CE and PLE dogs showed decreased enterocyte width in the duodenal segment, and the ileal and colonic enterocytes of CE dogs were narrower than those of healthy adult dogs. CE dogs had a lower goblet cell-to-enterocyte ratio in the colon segment compared to healthy dogs. This study provides valuable morphometric information on enterocytes during canine chronic enteropathies, highlighting significant morphological enterocyte alterations, particularly in the small intestine, as well as a reduced goblet cell-to-enterocyte ratio in the colon of CE cases compared to healthy adult dogs.

6.
Cells ; 12(9)2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-37174669

RESUMEN

A key component of efforts to identify the biological and drug-specific aspects contributing to therapeutic failure or unexpected exposure-associated toxicity is the study of drug-intestinal barrier interactions. While methods supporting such assessments are widely described for human therapeutics, relatively little information is available for similar evaluations in support of veterinary pharmaceuticals. There is, therefore, a critical need to develop novel approaches for evaluating drug-gut interactions in veterinary medicine. Three-dimensional (3D) organoids can address these difficulties in a reasonably affordable system that circumvents the need for more invasive in vivo assays in live animals. However, a first step in developing such systems is understanding organoid interactions in a 2D monolayer. Given the importance of orally administered medications for meeting the therapeutic need of companion animals, we demonstrate growth conditions under which canine-colonoid-derived intestinal epithelial cells survive, mature, and differentiate into confluent cell systems with high monolayer integrity. We further examine the applicability of this canine-colonoid-derived 2D model to assess the permeability of three structurally diverse, passively absorbed ß-blockers (e.g., propranolol, metoprolol, and atenolol). Both the absorptive and secretive apparent permeability (Papp) of these drugs at two different pH conditions were evaluated in canine-colonoid-derived monolayers and compared with that of Caco-2 cells. This proof-of-concept study provides promising preliminary results with regard to the utility of canine-derived organoid monolayers for species-specific assessments of therapeutic drug passive permeability.


Asunto(s)
Drogas Veterinarias , Animales , Perros , Humanos , Células CACO-2 , Células Epiteliales , Permeabilidad , Organoides
7.
Sci Rep ; 13(1): 2684, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36792677

RESUMEN

Angiotensin-converting enzyme inhibitors (ACEI) such as benazepril are commonly prescribed in both humans and dogs with heart disease to mitigate the renin-angiotensin-aldosterone system (RAAS); however, the dose-dependent effects of benazepril on comprehensive RAAS components remain unknown. In this study, nine purpose-bred healthy dogs received three different dosages of oral benazepril (0.125 mg/kg, 0.25 mg/kg, or 0.5 mg/kg) in a randomized crossover design following induction of RAAS activation by consuming a low-sodium diet. Blood samples were collected at serial time intervals after benazepril dosing to measure plasma benazeprilat (active metabolite of benazepril) and serum RAAS biomarkers. Blood pressure and echocardiogram were performed at baseline and after each benazepril administration. Time-weighted averages for RAAS biomarkers for 12 h post-dose and hemodynamic variables were compared between dosing groups using Wilcoxon rank-sum testing. Compared to the lowest dosage of benazepril (0.125 mg/kg), the highest dosage (0.5 mg/kg) resulted in lower time-weighted average values of angiotensin (Ang) II (- 38%, P = 0.004), Ang1-5 (- 53%, P = 0.001), ACE-S (surrogate for ACE activity; - 59%, P = 0.0002), and ALT-S (surrogate for alternative RAAS activity; - 22%, P = 0.004), and higher values of AngI (+ 78%, P = 0.014) and PRA-S (surrogate for plasma renin activity; + 58%, P = 0.040). There were no relevant differences between dosing groups for blood pressure or echocardiographic variables. Knowledge of dose-dependent alterations in biomarkers of the classical and alternative RAAS pathways could help inform clinical trials for dosage optimization in both dogs and humans.


Asunto(s)
Inhibidores de la Enzima Convertidora de Angiotensina , Sistema Renina-Angiotensina , Animales , Perros , Aldosterona/farmacología , Angiotensina II/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Biomarcadores
8.
Front Vet Sci ; 9: 1050467, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36406087

RESUMEN

In this study, we isolated and cultured canine and feline 3D corneal organoids. Samples derived from corneal limbal epithelium from one canine and one feline patient were obtained by enucleation after euthanasia. Stem cell isolation and organoid culture were performed by culturing organoids in Matrigel. Organoids were subsequently embedded in paraffin for further characterization. The expression of key corneal epithelial and stromal cell markers in canine and feline organoids was evaluated at the mRNA level by RNA-ISH and at the protein level by immunofluorescence (IF) and immunohistochemistry (IHC), while histochemical analysis was performed on both tissues and organoids using periodic-acid Schiff (PAS), Sirius Red, Gomori's Trichrome, and Colloidal Iron stains. IF showed consistent expression of AQP1 within canine and feline organoids and tissues. P63 was present in canine tissues, canine organoids, and feline tissues, but not in feline organoids. Results from IHC staining further confirmed the primarily epithelial origin of the organoids. Canine and feline 3D corneal organoids can successfully be cultured and maintained and express epithelial and stem cell progenitor markers typical of the cornea. This novel in vitro model can be used in veterinary ophthalmology disease modeling, corneal drug testing, and regenerative medicine.

10.
J Vis Exp ; (181)2022 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-35311824

RESUMEN

The permeable support system is typically used in conjunction with traditional two-dimensional (2D) cell lines as an in vitro tool for evaluating the oral permeability of new therapeutic drug candidates. However, the use of these conventional cell lines has limitations, such as altered expression of tight junctions, partial cell differentiation, and the absence of key nuclear receptors. Despite these shortcomings, the Caco-2 and MDCK models are widely accepted and validated for the prediction of human in vivo oral permeability. Dogs are a relevant translational model for biomedical research due to their similarities in gastrointestinal anatomy and intestinal microflora with humans. Accordingly, and in support of parallel drug development, the elaboration of an efficient and accurate in vitro tool for predicting in vivo drug permeability characteristics both in dogs and humans is highly desirable. Such a tool could be the canine intestinal organoid system, characterized by three-dimensional (3D), self-assembled epithelial structures derived from adult stem cells. The (1) Permeable Support Seeding Protocol describes the experimental methods for dissociating and seeding canine organoids in the inserts. Canine organoid isolation, culture, and harvest have been previously described in a separate set of protocols in this special issue. Methods for general upkeep of the canine intestinal organoid monolayer are discussed thoroughly in the (2) Monolayer Maintenance Protocol. Additionally, this protocol describes methods to assess the structural integrity of the monolayer via transepithelial electrical resistance (TEER) measurements and light microscopy. Finally, the (3) Permeability Experimental Protocol describes the tasks directly preceding an experiment, including in vitro validation of experimental results. Overall, the canine organoid model, combined with a dual-chamber cell culture technology, overcomes limitations associated with 2D experimental models, thereby improving the reliability of predictions of the apparent oral permeability of therapeutic drug candidates both in the canine and human patient.


Asunto(s)
Intestinos , Organoides , Animales , Células CACO-2 , Técnicas de Cultivo de Célula/métodos , Perros , Humanos , Mucosa Intestinal , Reproducibilidad de los Resultados
11.
J Vis Exp ; (179)2022 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-35156656

RESUMEN

Dogs develop complex multifactorial diseases analogous to humans, including inflammatory diseases, metabolic diseases, and cancer. Therefore, they represent relevant large animal models with the translational potential to human medicine. Organoids are 3-dimensional (3D), self-assembled structures derived from stem cells that mimic the microanatomy and physiology of their organ of origin. These translational in vitro models can be used for drug permeability and discovery applications, toxicology assessment, and to provide a mechanistic understanding of the pathophysiology of multifactorial chronic diseases. Furthermore, canine organoids can enhance the lives of companion dogs, providing input in various areas of veterinary research and facilitating personalized treatment applications in veterinary medicine. A small group of donors can create a biobank of organoid samples, reducing the need for continuous tissue harvesting, as organoid cell lines can be sub-cultured indefinitely. Herein, three protocols that focus on the culture of intestinal and hepatic canine organoids derived from adult stem cells are presented. The Canine Organoid Isolation Protocol outlines methods to process tissue and embedding of the cell isolate in a supportive matrix (solubilized extracellular membrane matrix). The Canine Organoid Maintenance Protocol describes organoid growth and maintenance, including cleaning and passaging along with appropriate timing for expansion. The Organoid Harvesting and Biobanking Protocol describes ways to extract, freeze, and preserve organoids for further analysis.


Asunto(s)
Investigación Biomédica , Organoides , Animales , Bancos de Muestras Biológicas , Perros , Intestinos , Estándares de Referencia
12.
Vet Sci ; 10(1)2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36669027

RESUMEN

Chronic inflammatory enteropathy (CE) is a common cause of persistent gastrointestinal signs and intestinal inflammation in dogs. Since evidence links dysbiosis to mucosal inflammation, probiotics, prebiotics, or their combination (synbiotics) may reduce intestinal inflammation and ameliorate dysbiosis in affected dogs. This study's aim was to investigate the effects of the synbiotic-IgY supplement on clinical signs, inflammatory indices, and mucosal microbiota in dogs with CE. Dogs with CE were enrolled in a randomized prospective trial. Twenty-four client-owned dogs were fed a hydrolyzed diet and administered supplement or placebo (diet) for 6 weeks. Dogs were evaluated at diagnosis and 2- and 6-week post-treatment. Outcome measures included clinical activity, endoscopic and histologic scores, inflammatory markers (fecal calprotectin, C-reactive protein), and composition of the mucosal microbiota via FISH. Eleven supplement- and nine placebo-treated dogs completed the trial. After 6 weeks of therapy, clinical activity and endoscopic scores decreased in both groups. Compared to placebo-treated dogs, dogs administered supplement showed decreased calprotectin at 2-week post-treatment, decreased CRP at 2- and 6-week post-treatment increased mucosal Clostridia and Bacteroides and decreased Enterobacteriaceae in colonic biopsies at trial completion. Results suggest a beneficial effect of diet and supplements on host responses and mucosal microbiota in dogs with CE.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...