Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 2817, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561399

RESUMEN

Osteoarthritis (OA) is increasing in prevalence and has a severe impact on patients' lives. However, our understanding of biomarkers driving OA risk remains limited. We developed a model predicting the five-year risk of OA diagnosis, integrating retrospective clinical, lifestyle and biomarker data from the UK Biobank (19,120 patients with OA, ROC-AUC: 0.72, 95%CI (0.71-0.73)). Higher age, BMI and prescription of non-steroidal anti-inflammatory drugs contributed most to increased OA risk prediction ahead of diagnosis. We identified 14 subgroups of OA risk profiles. These subgroups were validated in an independent set of patients evaluating the 11-year OA risk, with 88% of patients being uniquely assigned to one of the 14 subgroups. Individual OA risk profiles were characterised by personalised biomarkers. Omics integration demonstrated the predictive importance of key OA genes and pathways (e.g., GDF5 and TGF-ß signalling) and OA-specific biomarkers (e.g., CRTAC1 and COL9A1). In summary, this work identifies opportunities for personalised OA prevention and insights into its underlying pathogenesis.


Asunto(s)
Osteoartritis , Humanos , Estudios Retrospectivos , Osteoartritis/diagnóstico , Osteoartritis/genética , Osteoartritis/tratamiento farmacológico , Biomarcadores , Antiinflamatorios no Esteroideos/uso terapéutico , Aprendizaje Automático , Proteínas de Unión al Calcio
2.
Front Immunol ; 15: 1322712, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38390326

RESUMEN

Accurate computational identification of B-cell epitopes is crucial for the development of vaccines, therapies, and diagnostic tools. However, current structure-based prediction methods face limitations due to the dependency on experimentally solved structures. Here, we introduce DiscoTope-3.0, a markedly improved B-cell epitope prediction tool that innovatively employs inverse folding structure representations and a positive-unlabelled learning strategy, and is adapted for both solved and predicted structures. Our tool demonstrates a considerable improvement in performance over existing methods, accurately predicting linear and conformational epitopes across multiple independent datasets. Most notably, DiscoTope-3.0 maintains high predictive performance across solved, relaxed and predicted structures, alleviating the need for experimental structures and extending the general applicability of accurate B-cell epitope prediction by 3 orders of magnitude. DiscoTope-3.0 is made widely accessible on two web servers, processing over 100 structures per submission, and as a downloadable package. In addition, the servers interface with RCSB and AlphaFoldDB, facilitating large-scale prediction across over 200 million cataloged proteins. DiscoTope-3.0 is available at: https://services.healthtech.dtu.dk/service.php?DiscoTope-3.0.


Asunto(s)
Epítopos de Linfocito B , Conformación Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA