Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Genome Res ; 30(4): 515-527, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32253279

RESUMEN

Cohesin is a ring-shaped multiprotein complex that is crucial for 3D genome organization and transcriptional regulation during differentiation and development. It also confers sister chromatid cohesion and facilitates DNA damage repair. Besides its core subunits SMC3, SMC1A, and RAD21, cohesin in somatic cells contains one of two orthologous STAG subunits, STAG1 or STAG2. How these variable subunits affect the function of the cohesin complex is still unclear. STAG1- and STAG2-cohesin were initially proposed to organize cohesion at telomeres and centromeres, respectively. Here, we uncover redundant and specific roles of STAG1 and STAG2 in gene regulation and chromatin looping using HCT116 cells with an auxin-inducible degron (AID) tag fused to either STAG1 or STAG2. Following rapid depletion of either subunit, we perform high-resolution Hi-C, gene expression, and sequential ChIP studies to show that STAG1 and STAG2 do not co-occupy individual binding sites and have distinct ways by which they affect looping and gene expression. These findings are further supported by single-molecule localizations via direct stochastic optical reconstruction microscopy (dSTORM) super-resolution imaging. Since somatic and congenital mutations of the STAG subunits are associated with cancer (STAG2) and intellectual disability syndromes with congenital abnormalities (STAG1 and STAG2), we verified STAG1-/STAG2-dependencies using human neural stem cells, hence highlighting their importance in particular disease contexts.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cromatina/genética , Proteínas Cromosómicas no Histona/metabolismo , Regulación de la Expresión Génica , Proteínas Nucleares/metabolismo , Sitios de Unión , Proteínas de Ciclo Celular/química , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/química , Diploidia , Humanos , Proteínas Nucleares/química , Unión Proteica , Conformación Proteica , Proteolisis , Relación Estructura-Actividad , Cohesinas
2.
Methods ; 170: 33-37, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31283985

RESUMEN

Genome organization is now understood to be tightly linked to all genomic functions. Thus, the high-resolution mapping of higher-order chromosomal structures via 3C-based approaches has become an integral tool for studying transcriptional and cell cycle regulation, signaling effects or disease onset. Nonetheless, 3C-based protocols are not without caveats, like dependencies on fixation conditions, restriction enzyme pervasiveness in crosslinked chromatin and ligation efficiency. To address some of these caveats, we describe here the streamlined iHi-C 2.0 protocol that allows for the genome-wide interrogation of native spatial chromatin contacts without a need for chemical fixation. This approach improves ligation efficiency and presents minimal material losses, and is thus suitable for analysing samples with limiting cell numbers. Following high throughput sequencing, iHi-C 2.0 generates high signal-to-noise and focal maps of the interactions within and between mammalian chromosomes under native conditions.


Asunto(s)
Cromatina/genética , Mapeo Cromosómico/métodos , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Recuento de Células , Fraccionamiento Celular/métodos , Línea Celular , Núcleo Celular/genética , Humanos , Conformación de Ácido Nucleico , Células Madre Pluripotentes , Secuenciación Completa del Genoma/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...