Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
R Soc Open Sci ; 11(5): 231949, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38721134

RESUMEN

Globally, heatwaves have become more common with hazardous consequences on biological processes. Research using a model insect (Tribolium castaneum) found that 5-day experimental heatwave conditions damaged several aspects of male reproductive biology, while females remained unaffected. However, females' reproductive fitness may still be impacted, as insects typically store sperm from multiple males in specialized organs for prolonged periods. Consequently, using males which produce sperm with green fluorescent protein (GFP)-tagged sperm nuclei, we visualized in vivo whether thermal stress affects the ejaculate occupancy across female storage sites under two scenarios; (i) increasing time since insemination and (ii) in the presence of defending competitor sperm. We reconfirmed that sperm from heatwave-exposed males sired fewer offspring with previously mated females and provided new scenarios for in vivo distributions of heat-stress-exposed males' sperm. Sperm from heatwave-exposed males occupied a smaller area and were at lower densities across the females' storage sites. Generally, sperm occupancy decreased with time since insemination, and sperm from the first male to mate dominated the long-term storage site. Reassuringly, although heated males' ejaculate was less successful in occupying female tracts, they were not lost from female storage at a faster rate and were no worse than control males in their offensive ability to enter storage sites occupied by competitor sperm. Future work should consider the potential site-specificity of factors influencing sperm storage where amenable.

2.
Ecol Evol ; 14(5): e11313, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38694756

RESUMEN

Small, isolated populations are often characterised by low levels of genetic diversity. This can result in inbreeding depression and reduced capacity to adapt to changes in the environment, and therefore higher risk of extinction. However, sometimes these populations can be rescued if allowed to increase in size or if migrants enter, bringing in new allelic variation and thus increasing genetic diversity. This study uses experimental manipulation of population size and migration to quantify their effects on fitness in a challenging environment to better understand genetic rescue. Using small, replicated populations of Tribolium castaneum experimentally evolved to different temperature regimes we tested genetic and demographic rescue, by performing large-scale manipulations of population size and migration and examining fitness consequences over multiple generations. We measured fitness in high temperature (38°C) thermal lines maintained at their usual 'small' population size of N = 100 individuals, and with 'large' scaled up duplicates containing N≈10,000 individuals. We compared these large lines with and without migration (m = 0.1) for 10 generations. Additionally, we assessed the effects of outcrossing at an individual level, by comparing fitness of hybrid (thermal line × stock) offspring with within-line crosses. We found that, at the population level, a rapid increase in the number of individuals in the population resulted in reduced fitness (represented by reproductive output and survival through heatwave conditions), regardless of migration. However, at an individual level, the hybrid offspring of migrants with native individuals generally demonstrated increased longevity in high temperature conditions compared with individuals from thermal selection lines. Overall, these populations showed no evidence that demographic manipulations led to genetic or evolutionary rescue. Following the effects of migration in individuals over several generations may be the next step in unravelling these conflicting results. We discuss these findings in the context of conservation intervention.

3.
R Soc Open Sci ; 10(12): 231427, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38094267

RESUMEN

The environment gametes perform in just before fertilization is increasingly recognized to affect offspring fitness, yet the contributions of male and female gametes and their adaptive significance remain largely unexplored. Here, we investigated gametic thermal plasticity and its effects on hatching success and embryo performance in Atlantic salmon (Salmo salar). Eggs and sperm were incubated overnight at 2°C or 8°C, temperatures within the optimal thermal range of this species. Crosses between warm- and cold-incubated gametes were compared using a full-factorial design, with half of each clutch reared in cold temperatures and the other in warm temperatures. This allowed disentangling single-sex interaction effects when pre-fertilization temperature of gametes mismatched embryonic conditions. Pre-fertilization temperature influenced hatch timing and synchrony, and matching sperm and embryo temperatures resulted in earlier hatching. Warm incubation benefited eggs but harmed sperm, reducing the hatching success and, overall, gametic thermal plasticity did not enhance offspring fitness, indicating vulnerability to thermal changes. We highlight the sensitivity of male gametes to higher temperatures, and that gamete acclimation may not effectively buffer against deleterious effects of thermal fluctuations. From an applied angle, we propose the differential storage of male and female gametes as a tool to enhance sustainability within the hatcheries.

4.
Heredity (Edinb) ; 131(4): 253-262, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37516814

RESUMEN

Dispersal behaviour is an important aspect of the life-history of animals. However, the genetic architecture of dispersal-related traits is often obscure or unknown, even in well studied species. Tribolium castaneum is a globally significant post-harvest pest and established model organism, yet studies of its dispersal have shown ambiguous results and the genetic basis of this behaviour remains unresolved. We combine experimental evolution and agent-based modelling to investigate the number of loci underlying dispersal in T. castaneum, and whether the trait is sex-linked. Our findings demonstrate rapid evolution of dispersal behaviour under selection. We find no evidence of sex-biases in the dispersal behaviour of the offspring of crosses, supporting an autosomal genetic basis of the trait. Moreover, simulated data approximates experimental data under simulated scenarios where the dispersal trait is controlled by one or few loci, but not many loci. Levels of dispersal in experimentally inbred lines, compared with simulations, indicate that a single locus model is not well supported. Taken together, these lines of evidence support an oligogenic architecture underlying dispersal in Tribolium castaneum. These results have implications for applied pest management and for our understanding of the evolution of dispersal in the coleoptera, the world's most species-rich order.

5.
Molecules ; 28(11)2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37298928

RESUMEN

The vulnerabilities of cancer cells constitute a promising strategy for drug therapeutics. This paper integrates proteomics, bioinformatics, and cell genotype together with in vitro cell proliferation assays to identify key biological processes and potential novel kinases that could account, at least in part, for the clinical differences observed in colorectal cancer (CRC) patients. This study started by focusing on CRC cell lines stratified by their microsatellite (MS) state and p53 genotype. It shows that cell-cycle checkpoint, metabolism of proteins and RNA, signal transduction, and WNT signaling processes are significantly more active in MSI-High p53-WT cell lines. Conversely, MSI-High cell lines with a mutant (Mut) p53 gene showed hyperactivation of cell signaling, DNA repair, and immune-system processes. Several kinases were linked to these phenotypes, from which RIOK1 was selected for additional exploration. We also included the KRAS genotype in our analysis. Our results showed that RIOK1's inhibition in CRC MSI-High cell lines was dependent on both the p53 and KRAS genotypes. Explicitly, Nintedanib showed relatively low cytotoxicity in MSI-High with both mutant p53 and KRAS (HCT-15) but no inhibition in p53 and KRAS WT (SW48) MSI-High cells. This trend was flipped in CRC MSI-High bearing opposite p53-KRAS genotypes (e.g., p53-Mut KRAS-WT or p53-WT KRAS-Mut), where observed cytotoxicity was more extensive compared to the p53-KRAS WT-WT or Mut-Mut cells, with HCT 116 (KRAS-Mut and p53-WT) being the most sensitive to RIOK1 inhibition. These results highlight the potential of our in silico computational approach to identify novel kinases in CRC sub-MSI-High populations as well as the importance of clinical genomics in determining drug potency.


Asunto(s)
Neoplasias Colorrectales , Humanos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Mutación , Proteínas Proto-Oncogénicas p21(ras)/genética , Transducción de Señal
6.
J Exp Biol ; 226(1)2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36511132

RESUMEN

Gamete-level sexual selection of externally fertilising species is usually achieved by modifying sperm behaviour with mechanisms that alter the chemical environment in which gametes perform. In fish, this can be accomplished through the ovarian fluid, a substance released with the eggs at spawning. While the biochemical effects of ovarian fluid in relation to sperm energetics have been investigated, the influence of the physical environment in which sperm compete remains poorly explored. Our objective was therefore to gain insights on the physical structure of this fluid and potential impacts on reproduction. Using soft-matter physics approaches of steady-state and oscillatory viscosity measurements, we subjected wild Atlantic salmon ovarian fluids to variable shear stresses and frequencies resembling those exerted by sperm swimming through the fluid near eggs. We show that this fluid, which in its relaxed state is a gel-like substance, displays a non-Newtonian viscoelastic and shear-thinning profile, where the viscosity decreases with increasing shear rates. We concurrently find that this fluid obeys the Cox-Merz rule below 7.6 Hz and infringes it above this level, thus indicating a shear-thickening phase where viscosity increases provided it is probed gently enough. This suggests the presence of a unique frequency-dependent structural network with relevant implications for sperm energetics and fertilisation dynamics. This article has an associated ECR Spotlight interview with Marco Graziano.


Asunto(s)
Salmo salar , Animales , Masculino , Viscosidad , Semen , Motilidad Espermática , Interacciones Espermatozoide-Óvulo
7.
Biology (Basel) ; 11(9)2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36138781

RESUMEN

The conformational sensitivity of intrinsically disordered proteins to shifts in pH due to their high degree of charged residues has been recognized for well over a decade. However, the role of the non-ionizable residues in this pH sensitivity remains poorly understood. Our lab has been investigating the pH sensitivity of the poly-E motifs of the PEVK region of the muscle protein titin, which provides an ideal model system to explore this question. Using a series of 15-amino acid peptides derived from one of the poly-E motif sequences, we have investigated the role of side-chain chemistry in the conformational flexibility of this region. Our results demonstrate that aromatic side chains and proline content are the two variables that most influence pH sensitivity. The introduction of aromatic side chains resulted in a more collapsed structure, even at pH 7, while the removal of prolines resulted in a higher degree of pH sensitivity. These results highlight the importance of considering the impact of non-ionizable residues on IDP function, especially when considering the impact of pH on conformational flexibility.

8.
BMC Genomics ; 23(1): 657, 2022 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-36115951

RESUMEN

BACKGROUND: Titinopathies are inherited muscular diseases triggered by genetic mutations in the titin gene. Muscular dystrophy with myositis (mdm) is one such disease caused by a LINE repeat insertion, leading to exon skipping and an 83-amino acid residue deletion in the N2A-PEVK region of mouse titin. This region has been implicated in a number of titin-titin ligand interactions, hence are important for myocyte signaling and health. Mice with this mdm mutation develop a severe and progressive muscle degeneration. The range of phenotypic differences observed in mdm mice shows that the deletion of this region induces a cascade of transcriptional changes extending to numerous signaling pathways affected by the titin filament. Previous research has focused on correlating phenotypic differences with muscle function in mdm mice. These studies have provided understanding of the downstream physiological effects resulting from the mdm mutation but only provide insights on processes that can be physiologically observed and measured. We used differential gene expression (DGE) to compare the transcriptomes of extensor digitorum longus (EDL), psoas and soleus muscles from wild-type and mdm mice to develop a deeper understand of these tissue-specific responses. RESULTS: The overall expression pattern observed shows a well-differentiated transcriptional signature in mdm muscles compared to wild type. Muscle-specific clusters observed within the mdm transcriptome highlight the level of variability of each muscle to the deletion. Differential gene expression and weighted gene co-expression network analysis showed a strong directional response in oxidative respiration-associated mitochondrial genes, which aligns with the poor shivering and non-shivering thermogenesis previously observed. Sln, which is a marker associated with shivering and non-shivering thermogenesis, showed the strongest expression change in fast-fibered muscles. No drastic changes in MYH expression levels were reported, which indicated an absence of major fiber-type switching events. Overall expression shifts in MYH isoforms, MARPs, and extracellular matrix associated genes demonstrated the transcriptional complexity associated with mdm mutation. The expression alterations in mitochondrial respiration and metabolism related genes in the mdm muscle dominated over other transcriptomic changes, and likely account for the late stage cellular responses in the mdm muscles. CONCLUSIONS: We were able to demonstrate that the complex nature of mdm mutation extends beyond a simple rearrangement in titin gene. EDL, psoas and soleus exemplify unique response modes observed in skeletal muscles with mdm mutation. Our data also raises the possibility that failure to maintain proper energy homeostasis in mdm muscles may contribute to the pathogenesis of the degenerative phenotype in mdm mice. Understanding the full disease-causing molecular cascade is difficult using bulk RNA sequencing techniques due to intricate nature of the disease. The development of the mdm phenotype is temporally and spatially regulated, hence future studies should focus on single fiber level investigations.


Asunto(s)
Distrofias Musculares , Miositis , Aminoácidos/genética , Animales , Conectina/genética , Conectina/metabolismo , Ligandos , Ratones , Músculo Esquelético/fisiología , Distrofias Musculares/genética , Distrofias Musculares/patología , Miositis/genética , Miositis/metabolismo , Miositis/patología , Transcriptoma
9.
Int J Mol Sci ; 23(16)2022 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-36012129

RESUMEN

Muscular dystrophy with myositis (mdm) is a naturally occurring mutation in the mouse Ttn gene that results in higher passive stress in muscle fibers and intact muscles compared to wild-type (WT). The goal of this study was to test whether alternative splicing of titin exons occurs in mdm muscles, which contain a small deletion in the N2A-PEVK regions of titin, and to test whether splicing changes are associated with an increase in titin-based passive tension. Although higher levels of collagen have been reported previously in mdm muscles, here we demonstrate alternative splicing of titin in mdm skeletal muscle fibers. We identified Z-band, PEVK, and C-terminus Mex5 exons as splicing hotspots in mdm titin using RNA sequencing data and further reported upregulation in ECM-associated genes. We also treated skinned mdm soleus fiber bundles with trypsin, trypsin + KCl, and trypsin + KCL + KI to degrade titin. The results showed that passive stress dropped significantly more after trypsin treatment in mdm fibers (11 ± 1.6 mN/mm2) than in WT fibers (4.8 ± 1 mN/mm2; p = 0.0004). The finding that treatment with trypsin reduces titin-based passive tension more in mdm than in WT fibers supports the hypothesis that exon splicing leads to the expression of a stiffer and shorter titin isoform in mdm fibers. After titin extraction by trypsin + KCl + KI, mdm fibers (6.7 ± 1.27 mN/mm2) had significantly higher collagen-based passive stress remaining than WT fibers (2.6 ± 1.3 mN/mm2; p = 0.0014). We conclude that both titin and collagen contribute to higher passive tension of mdm muscles.


Asunto(s)
Músculo Esquelético , Distrofias Musculares , Animales , Colágeno , Conectina/genética , Ratones , Músculo Esquelético/fisiología , Distrofias Musculares/genética , Proteínas Quinasas , Tripsina
10.
Int J Mol Sci ; 23(9)2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35563177

RESUMEN

The disordered PEVK region of titin contains two main structural motifs: PPAK and poly-E. The distribution of these motifs in the PEVK region contributes to the elastic properties of this region, but the specific mechanism of how these motifs work together remains unclear. Previous work from our lab has demonstrated that 28-amino acid peptides of the poly-E motif are sensitive to shifts in pH, becoming more flexible as the pH decreases. We extend this work to longer poly-E constructs, including constructs containing PPAK motifs. Our results demonstrate that longer poly-E motifs have a much larger range of pH sensitivity and that the inclusion of the PPAK motif reduces this sensitivity. We also demonstrate that binding calcium can increase the conformational flexibility of the poly-E motif, though the PPAK motif can block this calcium-dependent change. The data presented here suggest a model where PPAK and calcium can alter the stiffness of the poly-E motif by modulating the degree of charge repulsion in the glutamate clusters.


Asunto(s)
Calcio , Proteínas Musculares , Secuencia de Aminoácidos , Calcio/metabolismo , Conectina/metabolismo , Concentración de Iones de Hidrógeno , Proteínas Musculares/metabolismo , Péptidos/química
11.
Biochem Biophys Res Commun ; 589: 147-151, 2022 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-34922195

RESUMEN

Titin, the largest muscle protein, plays an important role in passive tension, sarcomeric integrity and cell signaling within the muscle. Recent work has also highlighted a role for titin in active muscle and the N2A region found in skeletal muscle titin and in some isoforms of cardiac titin has been linked to this function. The N2A region is a multi-domain region composed of four immunoglobulin domains (I80-I83) and a disordered region called the insertion sequence. Previously, our lab has shown that the N2A region binds F-actin in a calcium dependent manner, but it is not known which domains within this region are critical for this binding to occur. In this work, we have used co-sedimentation to demonstrate that only constructs containing the I80 domain are capable of binding F-actin. In addition, binding was only observed in constructs containing at least 3 immunoglobulin domains suggesting a length-dependence to binding. Finally, the calcium-dependence of N2A binding is lost when I83 is not present, consistent with the calcium stabilization that has been reported for this domain. Based on these results, we propose that I80 is critical for initiating binding to F-actin and that I83 is responsible for the calcium dependence.


Asunto(s)
Actinas/metabolismo , Conectina/química , Conectina/metabolismo , Área Bajo la Curva , Calcio/metabolismo , Unión Proteica , Dominios Proteicos
12.
Biomedicines ; 9(10)2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34680512

RESUMEN

While protein refolding has been studied for over 50 years since the pioneering work of Christian Anfinsen, there have been a limited number of studies correlating results between chemical, thermal, and mechanical unfolding. The limited knowledge of the relationship between these processes makes it challenging to compare results between studies if different refolding methods were applied. Our current work compares the energetic barriers and folding rates derived from chemical, thermal, and mechanical experiments using an immunoglobulin-like domain from the muscle protein titin as a model system. This domain, I83, has high solubility and low stability relative to other Ig domains in titin, though its stability can be modulated by calcium. Our experiments demonstrated that the free energy of refolding was equivalent with all three techniques, but the refolding rates exhibited differences, with mechanical refolding having slightly faster rates. This suggests that results from equilibrium-based measurements can be compared directly but care should be given comparing refolding kinetics derived from refolding experiments that used different unfolding methods.

13.
Nat Ecol Evol ; 5(8): 1064-1065, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34155387
14.
R Soc Open Sci ; 8(3): 201717, 2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33959335

RESUMEN

With climate change creating a more volatile atmosphere, heatwaves that create thermal stress for living systems will become stronger and more frequent. Using the flour beetle Tribolium castaneum, we measure the impacts of thermal stress from experimental heatwaves in the laboratory on reproduction and survival across different insect life stages, and the extent and pace of any recovery. We exposed larvae, pupae, juvenile and mature adult male beetles to 5-day periods of heat stress where temperatures were maintained at either 40°C or 42°C, a few degrees above the 35°C optimum for this species' population productivity, and then measured survival and reproduction compared with controls at 30°C. Mortality due to thermal stress was greatest among juvenile life stages. Male reproductive function was specifically damaged by high temperatures, especially if experienced through pupal or immature life stages when complete sterility was shown at reproductive maturity; larval exposure did not damage adult male fertility. High temperatures impaired testis development and the production of viable sperm, with damage being strongest when experienced during pupal or juvenile adult stages. Despite this disruption, males recovered from heat stress and, depending on the stage of exposure, testis size, sperm production and fertility returned to normal 15-28 days after exposure. Our experiments reveal how thermal stress from heatwave conditions could impact on insect survival and reproduction across different life stages, and the potential and timescales of recovery.

15.
Heredity (Edinb) ; 126(6): 869-883, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33767370

RESUMEN

Flour beetles of the genus Tribolium have been utilised as informative study systems for over a century and contributed to major advances across many fields. This review serves to highlight the significant historical contribution that Tribolium study systems have made to the fields of ecology and evolution, and to promote their use as contemporary research models. We review the broad range of studies employing Tribolium to make significant advances in ecology and evolution. We show that research using Tribolium beetles has contributed a substantial amount to evolutionary and ecological understanding, especially in the fields of population dynamics, reproduction and sexual selection, population and quantitative genetics, and behaviour, physiology and life history. We propose a number of future research opportunities using Tribolium, with particular focus on how their amenability to forward and reverse genetic manipulation may provide a valuable complement to other insect models.


Asunto(s)
Escarabajos , Tribolium , Animales , Escarabajos/genética , Insectos , Modelos Biológicos , Reproducción/genética , Tribolium/genética
16.
Biochem Biophys Rep ; 24: 100859, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33294637

RESUMEN

The muscle protein titin plays a crucial role in passive elasticity and the disordered PEVK region within titin is central to that function. The PEVK region is so named due to its high proline, glutamate, valine and lysine content and the high charge density in this region results in a lack of organized structure within this domain. The PEVK region is highly extensible but the molecular interactions that contribute to the elastic nature of the PEVK still remain poorly described. The PEVK region is formed by two unique sequence motifs. The PPAK motif is a 26 to 28 amino acid sequence that contains a mixture of charged and hydrophobic residues and is the primary building block for the PEVK region. Poly-E sequence motifs vary in length and contain clusters of 3-4 glutamic acids distributed throughout the motif. In this study, we derived two 28-residue peptides from the human titin protein sequence and measured their structural characteristics over a range of pHs. Our results demonstrate that the poly-E peptide undergoes a shift from a more rigid and elongated state to a more collapsed state as pH decreases with the midpoint of this transition being at pH ~5.5. Interestingly, a similar conformational shift is not observed in the PPAK peptide. These results suggest that the poly-E motif might provide a nucleating site for the PEVK when the muscle is not in an extended state.

17.
BMC Genomics ; 21(1): 808, 2020 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-33213377

RESUMEN

BACKGROUND: Individual skeletal muscles have evolved to perform specific tasks based on their molecular composition. In general, muscle fibers are characterized as either fast-twitch or slow-twitch based on their myosin heavy chain isoform profiles. This approach made sense in the early days of muscle studies when SDS-PAGE was the primary tool for mapping fiber type. However, Next Generation Sequencing tools permit analysis of the entire muscle transcriptome in a single sample, which allows for more precise characterization of differences among fiber types, including distinguishing between different isoforms of specific proteins. We demonstrate the power of this approach by comparing the differential gene expression patterns of extensor digitorum longus (EDL), psoas, and soleus from mice using high throughput RNA sequencing. RESULTS: EDL and psoas are typically classified as fast-twitch muscles based on their myosin expression pattern, while soleus is considered a slow-twitch muscle. The majority of the transcriptomic variability aligns with the fast-twitch and slow-twitch characterization. However, psoas and EDL exhibit unique expression patterns associated with the genes coding for extracellular matrix, myofibril, transcription, translation, striated muscle adaptation, mitochondrion distribution, and metabolism. Furthermore, significant expression differences between psoas and EDL were observed in genes coding for myosin light chain, troponin, tropomyosin isoforms, and several genes encoding the constituents of the Z-disk. CONCLUSIONS: The observations highlight the intricate molecular nature of skeletal muscles and demonstrate the importance of utilizing transcriptomic information as a tool for skeletal muscle characterization.


Asunto(s)
Fibras Musculares de Contracción Rápida , Fibras Musculares de Contracción Lenta , Animales , Ratones , Músculo Esquelético , Cadenas Pesadas de Miosina/genética , Transcriptoma
18.
Ecol Evol ; 10(19): 10851-10857, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33072300

RESUMEN

Polyandry, when females mate with more than one male, is theorised to play an important role in successful colonisation of new habitats. In addition to possible benefits from sexual selection, even mild polyandry could facilitate colonisation by protecting against inbreeding and reducing the costs of mating with incompatible or infertile males. Here, we measure the importance of mild polyandry for population viability and reproductive fitness following experimental founder events into a higher-temperature regime. Using colonisation experiments with the model beetle Tribolium castaneum, in which females can produce offspring for up to 140 days following a single mating, we founded more than 100 replicate populations using single females that had been given the opportunity to mate with either one or two males and then tracked their subsequent population dynamics. Following population viability and fitness across 10 generations, we found that extinction rates were significantly lower in populations founded by females given polyandrous opportunities to mate with two males (9%) compared to populations founded by monogamous females (34%). In addition, populations founded by females that had been provided with opportunities to store sperm from two different males showed double the median productivity following colonisation compared to monogamous-founded populations. Notably, we identified short-term and longer-term benefits to post-colonisation populations from double-mating, with results suggesting that polyandry acts to both protect against mating with incompatible males through the founder event, and reduce inbreeding depression as the colonisation proceeds for 10 generations. Our results therefore show that even mild polyandry provides both reproductive and genetic benefits for colonising populations.

19.
Glob Chang Biol ; 26(8): 4226-4239, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32558066

RESUMEN

Earth's biodiversity is undergoing mass extinction due to anthropogenic compounding of environmental, demographic and genetic stresses. These different stresses can trap populations within a reinforcing feedback loop known as the extinction vortex, in which synergistic pressures build upon one another through time, driving down population viability. Sexual selection, the widespread evolutionary force arising from competition, choice and reproductive variance within animal mating patterns could have vital consequences for population viability and the extinction vortex: (a) if sexual selection reinforces natural selection to fix 'good genes' and purge 'bad genes', then mating patterns encouraging competition and choice may help protect populations from extinction; (b) by contrast, if mating patterns create load through evolutionary or ecological conflict, then population viability could be further reduced by sexual selection. We test between these opposing theories using replicate populations of the model insect Tribolium castaneum exposed to over 10 years of experimental evolution under monogamous versus polyandrous mating patterns. After a 95-generation history of divergence in sexual selection, we compared fitness and extinction of monogamous versus polyandrous populations through an experimental extinction vortex comprising 15 generations of cycling environmental and genetic stresses. Results showed that lineages from monogamous evolutionary backgrounds, with limited opportunities for sexual selection, showed rapid declines in fitness and complete extinction through the vortex. By contrast, fitness of populations from the history of polyandry, with stronger opportunities for sexual selection, declined slowly, with 60% of populations surviving by the study end. The three vortex stresses of (a) nutritional deprivation, (b) thermal stress and (c) genetic bottlenecking had similar impacts on fitness declines and extinction risk, with an overall sigmoid decline in survival through time. We therefore reveal sexual selection as an important force behind lineages facing extinction threats, identifying the relevance of natural mating patterns for conservation management.


Asunto(s)
Preferencia en el Apareamiento Animal , Animales , Evolución Biológica , Extinción Biológica , Reproducción , Selección Genética , Conducta Sexual Animal
20.
Protein Sci ; 29(5): 1160-1171, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32112607

RESUMEN

Titin is a large filamentous protein that spans half a sarcomere, from Z-disk to M-line. The N2A region within the titin molecule exists between the proximal immunoglobulin (Ig) region and the PEVK region and protein-protein interactions involving this region are required for normal muscle function. The N2A region consists of four Ig domains (I80-I83) with a 105 amino acid linker region between I80 and I81 that has a helical nature. Using chemical stability measurements, we show that predicted differences between the adjacent Ig domains (I81-I83) correlate with experimentally determined differences in chemical stability and refolding kinetics. Our work further shows that I83 has the lowest ΔGunfolding , which is increased in the presence of calcium (pCa 4.3), indicating that Ca2+ plays a role in stabilizing this immunoglobulin domain. The characteristics of N2A's three Ig domains provide insight into the stability of the binding sites for proteins that interact with the N2A region. This work also provides insights into how Ca2+ might influence binding events involving N2A.


Asunto(s)
Calcio/química , Conectina/química , Dominios de Inmunoglobulinas , Sitios de Unión , Biología Computacional , Humanos , Cinética , Pliegue de Proteína , Estabilidad Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...