RESUMEN
Argininosuccinic aciduria (ASA) is a rare inherited metabolic disease caused by argininosuccinate lyase (ASL) deficiency. Patients with ASA present with hyperammonaemia due to an impaired urea cycle pathway in the liver, and systemic disease with epileptic encephalopathy, chronic liver disease, and arterial hypertension. A human induced pluripotent stem cell (iPSC) line from the fibroblasts of a patient with ASA with homozygous pathogenic c.437G > A mutation of hASL was generated. Characterization of the cell line demonstrated pluripotency, differentiation potential and normal karyotype. This cell line, called UCLi024-A, can be utilized for in vitro disease modelling of ASA, and design of novel therapeutics.
Asunto(s)
Aciduria Argininosuccínica , Células Madre Pluripotentes Inducidas , Humanos , Aciduria Argininosuccínica/genética , Aciduria Argininosuccínica/metabolismo , Aciduria Argininosuccínica/terapia , Células Madre Pluripotentes Inducidas/metabolismo , Argininosuccinatoliasa/genética , Mutación/genética , HomocigotoRESUMEN
The detection of intracellular proteins in vitro is commonly realized with immunofluorescence techniques, through which antibodies or markers are delivered into fixed cells and recognize specific proteins. Many innovative techniques, however, avoid cells fixation by chemical compounds and, among the others, electroporation is widely used. Here we demonstrate that in situ electroporation on thin film SiO2 capacitive microelectrodes can be realized with high efficiency to deliver fluorescent markers and antibodies into mammalian cell lines and primary neuronal cells to detect intracellular proteins, like actin. The results presented in this work open the way to the use of this technique for the detection of potentially any target protein, even through subsequent electroporations.
Asunto(s)
Electroporación , Dióxido de Silicio , Animales , Electroporación/métodos , Línea Celular , Proteínas Fluorescentes Verdes , Técnica del Anticuerpo Fluorescente , MamíferosRESUMEN
Three-dimensional hydrogel-based organ-like cultures can be applied to study development, regeneration, and disease in vitro. However, the control of engineered hydrogel composition, mechanical properties and geometrical constraints tends to be restricted to the initial time of fabrication. Modulation of hydrogel characteristics over time and according to culture evolution is often not possible. Here, we overcome these limitations by developing a hydrogel-in-hydrogel live bioprinting approach that enables the dynamic fabrication of instructive hydrogel elements within pre-existing hydrogel-based organ-like cultures. This can be achieved by crosslinking photosensitive hydrogels via two-photon absorption at any time during culture. We show that instructive hydrogels guide neural axon directionality in growing organotypic spinal cords, and that hydrogel geometry and mechanical properties control differential cell migration in developing cancer organoids. Finally, we show that hydrogel constraints promote cell polarity in liver organoids, guide small intestinal organoid morphogenesis and control lung tip bifurcation according to the hydrogel composition and shape.
Asunto(s)
Bioimpresión , Organoides , Hidrogeles/química , Ingeniería de Tejidos/métodos , Polaridad Celular , PulmónRESUMEN
Human cellular reprogramming to induced pluripotency is still an inefficient process, which has hindered studying the role of critical intermediate stages. Here we take advantage of high efficiency reprogramming in microfluidics and temporal multi-omics to identify and resolve distinct sub-populations and their interactions. We perform secretome analysis and single-cell transcriptomics to show functional extrinsic pathways of protein communication between reprogramming sub-populations and the re-shaping of a permissive extracellular environment. We pinpoint the HGF/MET/STAT3 axis as a potent enhancer of reprogramming, which acts via HGF accumulation within the confined system of microfluidics, and in conventional dishes needs to be supplied exogenously to enhance efficiency. Our data suggest that human cellular reprogramming is a transcription factor-driven process that it is deeply dependent on extracellular context and cell population determinants.
Asunto(s)
Células Madre Pluripotentes Inducidas , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Reprogramación Celular , Regulación de la Expresión Génica , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Células CultivadasRESUMEN
3D constructs are fundamental in tissue engineering and cancer modeling, generating a demand for tailored materials creating a suitable cell culture microenvironment and amenable to be bioprinted. Gelatin methacrylate (GelMA) is a well-known functionalized natural polymer with good printability and binding motifs allowing cell adhesion; however, its tight micropores induce encapsulated cells to retain a non-physiological spherical shape. To overcome this problem, blended GelMa is here blended with Pluronic F-127 (PLU) to modify the hydrogel internal porosity by inducing the formation of larger mesoscale pores. The change in porosity also leads to increased swelling and a slight decrease in Young's modulus. All blends form stable hydrogels both when cast in annular molds and bioprinted in complex structures. Embedded cells maintain high viability, and while Neuroblastoma cancer cells typically aggregate inside the mesoscale pores, Mesenchymal Stem Cells stretch in all three dimensions, forming cell-cell and cell-ECM interactions. The results of this work prove that the combination of tailored porous materials with bioprinting techniques enables to control both the micro and macro architecture of cell-laden constructs, a fundamental aspect for the development of clinically relevant in vitro constructs.
Asunto(s)
Bioimpresión , Gelatina , Gelatina/farmacología , Gelatina/química , Porosidad , Metacrilatos/química , Ingeniería de Tejidos/métodos , Hidrogeles/farmacología , Hidrogeles/química , Bioimpresión/métodos , Impresión Tridimensional , Andamios del Tejido/químicaRESUMEN
The establishment of in vitro naive human pluripotent stem cell cultures opened new perspectives for the study of early events in human development. The role of several transcription factors and signaling pathways have been characterized during maintenance of human naive pluripotency. However, little is known about the role exerted by the extracellular matrix (ECM) and its three-dimensional (3D) organization. Here, using an unbiased and integrated approach combining microfluidic cultures with transcriptional, proteomic, and secretome analyses, we found that naive, but not primed, hiPSC colonies are characterized by a self-organized ECM-rich microenvironment. Based on this, we developed a 3D culture system that supports robust long-term feeder-free self-renewal of naive hiPSCs and also allows direct and timely developmental morphogenesis simply by modulating the signaling environment. Our study opens new perspectives for future applications of naive hiPSCs to study critical stages of human development in 3D starting from a single cell.
Asunto(s)
Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes , Humanos , Proteómica , Matriz Extracelular , MorfogénesisRESUMEN
To reach inflamed tissues from the circulation, neutrophils must overcome physical constraints imposed by the tissue architecture, such as the endothelial barrier or the three-dimensional (3D) interstitial space. In these microenvironments, neutrophils are forced to migrate through spaces smaller than their own diameter. One of the main challenges for cell passage through narrow gaps is the deformation of the nucleus, the largest and stiffest organelle in cells. Here, we showed that chemokines, the extracellular signals that guide cell migration in vivo, modulated nuclear plasticity to support neutrophil migration in restricted microenvironments. Exploiting microfabricated devices, we found that the CXC chemokine CXCL12 enhanced the nuclear pliability of mouse bone marrow-derived neutrophils to sustain their migration in 3D landscapes. This previously uncharacterized function of CXCL12 was mediated by the atypical chemokine receptor ACKR3 (also known as CXCR7), required protein kinase A (PKA) activity, and induced chromatin compaction, which resulted in enhanced cell migration in 3D. Thus, we propose that chemical cues regulate the nuclear plasticity of migrating leukocytes to optimize their motility in restricted microenvironments.
Asunto(s)
Núcleo Celular , Neutrófilos , Ratones , Animales , Movimiento Celular , Transducción de Señal , CromatinaRESUMEN
The human developmental processes during the early post-implantation stage instruct the specification and organization of the lineage progenitors into a body plan. These processes, which include patterning, cell sorting, and establishment of the three germ layers, have been classically studied in non-human model organisms and only recently, through micropatterning technology, in a human-specific context. Micropatterning technology has unveiled mechanisms during patterning and germ layer specification; however, cell sorting and their segregation in specific germ layer combinations have not been investigated yet in a human-specific in vitro system. Here, we developed an in vitro model of human ectodermal patterning, in which human pluripotent stem cells (hPSCs) self-organize to form a radially regionalized neural and non-central nervous system (CNS) ectoderm. We showed that by using micropatterning technology and by modulating BMP and WNT signals, we can regulate the appearance and spatial distribution of the different ectodermal populations. This pre-patterned ectoderm can be used to investigate the cell sorting behavior of hPSC-derived meso-endoderm cells, with an endoderm that segregates from the neural ectoderm. Thus, the combination of micro-technology with germ layer cross-mixing enables the study of cell sorting of different germ layers in a human context.
RESUMEN
In the last two decades lab-on-chip models, specifically heart-on-chip, have been developed as promising technologies for recapitulating physiological environments suitable for studies of drug and environmental effects on either human physiological or patho-physiological conditions. Most human heart-on-chip systems are based on integration and adaptation of terminally differentiated cells within microfluidic context. This process requires prolonged procedures, multiple steps, and is associated with an intrinsic variability of cardiac differentiation. In this view, we developed a method for cardiac differentiation-on-a-chip based on combining the stage-specific regulation of Wnt/ß-catenin signaling with the forced expression of transcription factors (TFs) that timely recapitulate hallmarks of the cardiac development. We performed the overall cardiac differentiation from human pluripotent stem cells (hPSCs) to cardiomyocytes (CMs) within a microfluidic environment. Sequential forced expression of cardiac TFs was achieved by a sequential mmRNAs delivery of first MESP1, GATA4 followed by GATA4, NKX2.5, MEF2C, TBX3, and TBX5. We showed that this optimized protocol led to a robust and reproducible approach to obtain a cost-effective hiPSC-derived heart-on-chip. The results showed higher distribution of cTNT positive CMs along the channel and a higher expression of functional cardiac markers (TNNT2 and MYH7). The combination of stage-specific regulation of Wnt/ß-catenin signaling with mmRNAs encoding cardiac transcription factors will be suitable to obtain heart-on-chip model in a cost-effective manner, enabling to perform combinatorial, multiparametric, parallelized and high-throughput experiments on functional cardiomyocytes.
RESUMEN
BACKGROUND: Phosphorylated proteins are known to be present in multiple body fluids in normal conditions, and abnormally accumulated under some pathological conditions. The biological significance of their role in the extracellular space has started being elucidated only recently, for example in bone mineralization, neural development, and coagulation. Here, we address some criticalities of conventional culture systems for the study of the extracellular regulation of phosphorylation. METHODS: We make use of microfluidics to scale-down the culture volume to a size comparable to the interstitial spaces occurring in vivo. The phosphoprotein content of conditioned media was analyzed by a colorimetric assay that detects global phosphorylation. RESULTS: We found that miniaturization of the culture system increases phosphoprotein accumulation. Moreover, we demonstrated that in conventional culture systems dilution affects the extent of the phosphorylation reactions occurring within the extracellular space. On the other hand, in microfluidics the phosphorylation status was not affected by addition of adenosine triphosphate (ATP) and FAM20C Golgi Associated Secretory Pathway Kinase (FAM20C) ectokinase, as if their concentration was already not limiting for the phosphorylation reaction to occur. CONCLUSIONS: The volume of the extracellular environment plays a role in the process of extracellular phosphorylation due to its effect on the concentration of substrates, enzymes and co-factors. GENERAL SIGNIFICANCE: Thus, the biological role of extracellular phosphoregulation may be better appreciated within a microfluidic culture system.
Asunto(s)
Calcificación Fisiológica , Fosfoproteínas , Adenosina Trifosfato/metabolismo , Aparato de Golgi/metabolismo , Fosfoproteínas/metabolismo , FosforilaciónRESUMEN
An integrative approach based on microfluidic design and stem cell biology enables capture of the spatial-temporal environmental evolution underpinning epigenetic remodeling and the morphogenetic process. We examine the body of literature that encompasses microfluidic applications where human induced pluripotent stem cells are derived starting from human somatic cells and where human pluripotent stem cells are differentiated into different cell types. We focus on recent studies where the intrinsic features of microfluidics have been exploited to control the reprogramming and differentiation trajectory at the microscale, including the capability of manipulating the fluid velocity field, mass transport regime, and controllable composition within micro- to nanoliter volumes in space and time. We also discuss studies of emerging microfluidic technologies and applications. Finally, we critically discuss perspectives and challenges in the field and how these could be instrumental for bringing about significant biological advances in the field of stem cell engineering.
Asunto(s)
Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes , Diferenciación Celular , Humanos , Dispositivos Laboratorio en un Chip , MicrofluídicaRESUMEN
Human induced pluripotent stem cells (iPSCs) are generated from somatic cells by the expression of a cocktail of transcription factors, and iPSCs have the capacity to generate in vitro all cell types of the human body. In addition to primed (conventional) iPSCs, several groups recently reported the generation of human naïve iPSCs, which are in a more primitive developmental state and have a broader developmental potential, as shown by their ability to form cells of the placenta. Human iPSCs have broad medical potential but their generation is often time-consuming, not scalable and requires viral vectors or stable genetic manipulations. To overcome such limitations, we developed protocols for high-efficiency generation of either conventional or naïve iPSCs by delivery of messenger RNAs (mRNAs) using a microfluidic system. In this protocol we describe how to produce microfluidic devices, and how to reprogram human somatic cells into naïve and primed iPSCs using these devices. We also describe how to transfer the iPSC colonies from the microfluidic devices over to standard multiwell plates for subsequent expansion of the cultures. Our approach does not require stable genetic modifications, is reproducible and cost-effective, allowing to produce patient-specific iPSCs for cell therapy, disease modeling, and in vitro developmental studies.
Asunto(s)
Células Madre Pluripotentes , Diferenciación Celular , Reprogramación Celular , Femenino , Vectores Genéticos , Humanos , Células Madre Pluripotentes Inducidas , Microfluídica , Embarazo , Factores de TranscripciónRESUMEN
COVID-19 typically manifests as a respiratory illness, but several clinical reports have described gastrointestinal symptoms. This is particularly true in children in whom gastrointestinal symptoms are frequent and viral shedding outlasts viral clearance from the respiratory system. These observations raise the question of whether the virus can replicate within the stomach. Here we generate gastric organoids from fetal, pediatric, and adult biopsies as in vitro models of SARS-CoV-2 infection. To facilitate infection, we induce reverse polarity in the gastric organoids. We find that the pediatric and late fetal gastric organoids are susceptible to infection with SARS-CoV-2, while viral replication is significantly lower in undifferentiated organoids of early fetal and adult origin. We demonstrate that adult gastric organoids are more susceptible to infection following differentiation. We perform transcriptomic analysis to reveal a moderate innate antiviral response and a lack of differentially expressed genes belonging to the interferon family. Collectively, we show that the virus can efficiently infect the gastric epithelium, suggesting that the stomach might have an active role in fecal-oral SARS-CoV-2 transmission.
Asunto(s)
COVID-19/patología , Mucosa Intestinal/virología , Organoides/virología , SARS-CoV-2/fisiología , Estómago/virología , Replicación Viral/fisiología , Feto Abortado , Anciano , Animales , COVID-19/virología , Línea Celular , Niño , Preescolar , Chlorocebus aethiops , Humanos , Lactante , Mucosa Intestinal/patología , Persona de Mediana Edad , Organoides/patología , SARS-CoV-2/aislamiento & purificación , Estómago/patologíaRESUMEN
The circadian system cyclically regulates many physiological and behavioral processes within the day. Desynchronization between physiological and behavioral rhythms increases the risk of developing some, including metabolic, disorders. Here we investigate how the oscillatory nature of metabolic signals, resembling feeding-fasting cycles, sustains the cell-autonomous clock in peripheral tissues. By controlling the timing, period and frequency of glucose and insulin signals via microfluidics, we find a strong effect on Per2::Luc fibroblasts entrainment. We show that the circadian Per2 expression is better sustained via a 24 h period and 12 h:12 h frequency-encoded metabolic stimulation applied for 3 daily cycles, aligned to the cell-autonomous clock, entraining the expression of hundreds of genes mostly belonging to circadian rhythms and cell cycle pathways. On the contrary misaligned feeding-fasting cycles synchronize and amplify the expression of extracellular matrix-associated genes, aligned during the light phase. This study underlines the role of the synchronicity between life-style-associated metabolic signals and peripheral clocks on the circadian entrainment.
Asunto(s)
Relojes Circadianos/fisiología , Ritmo Circadiano/genética , Conducta Alimentaria/fisiología , Animales , Ciclo Celular/genética , Línea Celular , Relojes Circadianos/genética , Medios de Cultivo/metabolismo , Matriz Extracelular/genética , Ayuno/fisiología , Glucosa/metabolismo , Insulinas/metabolismo , Dispositivos Laboratorio en un Chip , Ratones , Proteínas Circadianas Period/genética , TranscriptomaRESUMEN
Drug screening and disease modelling for skeletal muscle related pathologies would strongly benefit from the integration of myogenic cells derived from human pluripotent stem cells within miniaturized cell culture devices, such as microfluidic platform. Here, we identified the optimal culture conditions that allow direct differentiation of human pluripotent stem cells in myogenic cells within microfluidic devices. Myogenic cells are efficiently derived from both human embryonic (hESC) or induced pluripotent stem cells (hiPSC) in eleven days by combining small molecules and non-integrating modified mRNA (mmRNA) encoding for the master myogenic transcription factor MYOD. Our work opens new perspective for the development of patient-specific platforms in which a one-step myogenic differentiation could be used to generate skeletal muscle on-a-chip.
Asunto(s)
Diferenciación Celular/genética , Fibras Musculares Esqueléticas/citología , Proteína MioD/genética , Células Madre Pluripotentes/citología , Línea Celular , Humanos , Dispositivos Laboratorio en un Chip , Mesodermo/citología , Desarrollo de Músculos , ARN Mensajero , TransfecciónRESUMEN
Recent advancements in cell engineering have succeeded in manipulating cell identity with the targeted overexpression of specific cell fate determining transcription factors in a process named transcriptional programming. Neurogenin2 (NGN2) is sufficient to instruct pluripotent stem cells (PSCs) to acquire a neuronal identity when delivered with an integrating system, which arises some safety concerns for clinical applications. A non-integrating system based on modified messenger RNA (mmRNA) delivery method, represents a valuable alternative to lentiviral-based approaches. The ability of NGN2 mmRNA to instruct PSC fate change has not been thoroughly investigated yet. Here we aimed at understanding whether the use of an NGN2 mmRNA-based approach combined with a miniaturized system, which allows a higher transfection efficiency in a cost-effective system, is able to drive human induced PSCs (hiPSCs) toward the neuronal lineage. We show that NGN2 mRNA alone is able to induce cell fate conversion. Surprisingly, the outcome cell population accounts for multiple phenotypes along the neural development trajectory. We found that this mixed population is mainly constituted by neural stem cells (45% ± 18 PAX6 positive cells) and neurons (38% ± 8 ßIIITUBULIN positive cells) only when NGN2 is delivered as mmRNA. On the other hand, when the delivery system is lentiviral-based, both providing a constant expression of NGN2 or only a transient pulse, the outcome differentiated population is formed by a clear majority of neurons (88% ± 1 ßIIITUBULIN positive cells). Altogether, our data confirm the ability of NGN2 to induce neuralization in hiPSCs and opens a new point of view in respect to the delivery system method when it comes to transcriptional programming applications.
RESUMEN
Among the multiple metabolic signals involved in the establishment of the hepatic zonation, oxygen could play a key role. Indeed, depending on hepatocyte position in the hepatic lobule, gene expression and metabolism are differently affected by the oxygen gradient present across the lobule. The aim of this study is to understand whether an oxygen gradient, generated in vitro in our developed device, is sufficient to instruct a functional metabolic zonation during the differentiation of human embryonic stem cells (hESCs) from endoderm toward terminally differentiated hepatocytes, thus mimicking the in vivo situation. For this purpose, a microfluidic device was designed for the generation of a stable oxygen gradient. The oxygen gradient was applied to differentiating hESCs at the pre-hepatoblast stage. The definitive endoderm and hepatic endoderm cells were characterized by the expression of the transcription factor SOX-17 and alpha-fetoprotein (AFP). Immature and mature hepatocytes were characterized by hepatocyte nuclear factor 4-alpha (HNF-4α) and albumin (ALB) expression and also analyzed for cytochrome P450 (CYP3A4) zonation and glycogen accumulation through PAS staining. Metabolic zonated genes expression was assessed through quantitative real time PCR. Application of the oxygen gradient during differentiation induced zonated glycogen storage, which was higher in the hepatocytes grown in high pO2 compared to those grown in low pO2. The mRNA levels of glutamine synthetase (GLUL), beta-catenin (CTNNB) and its direct target cyclin D1 (CCND1) showed significantly higher expression in the cells grown in low pO2 compared to those grown in high pO2. On the contrary, carbamoyl-phosphate synthetase 1 (CPS1), ALB, the proliferative marker ki67 (MKI67) and cyclin A (CCNA) resulted to be significantly higher expressed in cells cultured in high pO2 compared to those cultured in low pO2. These results indicate that the oxygen gradient generated in our device can instruct the establishment of a functional metabolic zonation in differentiating hESCs. The possibility to obtain differentiated hepatocytes in vitro may allow in the future to deepen our knowledge about the physiology/pathology of hepatocytes in relation to the oxygen content.
Asunto(s)
Células Madre Embrionarias/citología , Hepatocitos/citología , Técnicas Analíticas Microfluídicas/instrumentación , Oxígeno/metabolismo , Técnicas de Cultivo de Célula , Diferenciación Celular , Línea Celular , Proliferación Celular , Células Madre Embrionarias/metabolismo , Perfilación de la Expresión Génica , Factor Nuclear 4 del Hepatocito/genética , Factor Nuclear 4 del Hepatocito/metabolismo , Hepatocitos/metabolismo , Humanos , Factores de Transcripción SOXF/genética , Factores de Transcripción SOXF/metabolismo , alfa-Fetoproteínas/genética , alfa-Fetoproteínas/metabolismoRESUMEN
Human induced pluripotent stem cells (hiPSCs) have a number of potential applications in stem cell biology and regenerative medicine, including precision medicine. However, their potential clinical application is hampered by the low efficiency, high costs, and heavy workload of the reprogramming process. Here we describe a protocol to reprogram human somatic cells to hiPSCs with high efficiency in 15 d using microfluidics. We successfully downscaled an 8-d protocol based on daily transfections of mRNA encoding for reprogramming factors and immune evasion proteins. Using this protocol, we obtain hiPSC colonies (up to 160 ± 20 mean ± s.d (n = 48)) in a single 27-mm2 microfluidic chamber) 15 d after seeding ~1,500 cells per independent chamber and under xeno-free defined conditions. Only ~20 µL of medium is required per day. The hiPSC colonies extracted from the microfluidic chamber do not require further stabilization because of the short lifetime of mRNA. The high success rate of reprogramming in microfluidics, under completely defined conditions, enables hundreds of cells to be simultaneously reprogrammed, with an ~100-fold reduction in costs of raw materials compared to those for standard multiwell culture conditions. This system also enables the generation of hiPSCs suitable for clinical translation or further research into the reprogramming process.
Asunto(s)
Reprogramación Celular , Células Madre Pluripotentes Inducidas/citología , Microfluídica/métodos , Separación Celular , Forma de la Célula , Fibroblastos/citología , Humanos , MicrotecnologíaRESUMEN
Induced pluripotent stem cells (iPSCs) are generated via the expression of the transcription factors OCT4 (also known as POU5F1), SOX2, KLF4 and cMYC (OSKM) in somatic cells. In contrast to murine naive iPSCs, conventional human iPSCs are in a more developmentally advanced state called primed pluripotency. Here, we report that human naive iPSCs (niPSCs) can be generated directly from fewer than 1,000 primary human somatic cells, without requiring stable genetic manipulation, via the delivery of modified messenger RNAs using microfluidics. Expression of the OSKM factors in combination with NANOG for 12 days generates niPSCs that are free of transgenes, karyotypically normal and display transcriptional, epigenetic and metabolic features indicative of the naive state. Importantly, niPSCs efficiently differentiate into all three germ layers. While niPSCs can be generated at low frequency under conventional conditions, our microfluidics approach enables the robust and cost-effective production of patient-specific niPSCs for regenerative medicine applications, including disease modelling and drug screening.
Asunto(s)
Diferenciación Celular , Estratos Germinativos/citología , Células Madre Pluripotentes Inducidas/citología , Microfluídica/métodos , Medicina Regenerativa/métodos , Animales , Células Cultivadas , Estratos Germinativos/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Cariotipo , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Ratones , Factor 3 de Transcripción de Unión a Octámeros/genética , Proteínas Proto-Oncogénicas c-myc/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Transcripción SOXB1/genéticaRESUMEN
Systemic diseases affect multiple tissues that interact with each other within a network difficult to explore at the body level. However, understanding the interdependences between tissues could be of high relevance for drug target identification, especially at the first stages of disease development. In vitro systems have the advantages of accessibility to measurements and precise controllability of culture conditions, but currently have limitations in mimicking human in vivo systemic tissue response. In this work, we present an in vitro model of cross-talk between an ex vivo culture of adipose tissue from an obese donor and a skeletal muscle in vitro model from a healthy donor. This is relevant to understand type 2 diabetes mellitus pathogenesis, as obesity is one of its main risk factors. The human adipose tissue biopsy was maintained as a three-dimensional culture for 48 h. Its conditioned culture medium was used to stimulate a human skeletal muscle-on-chip, developed by differentiating primary cells of a patient's biopsy under topological cues and molecular self-regulation. This system has been characterized to demonstrate its ability to mimic important features of the normal skeletal muscle response in vivo. We then found that the conditioned medium from a diseased adipose tissue is able to perturb the normal insulin sensitivity of a healthy skeletal muscle, as reported in the early stages of diabetes onset. In perspective, this work represents an important step toward the development of technological platforms that allow to study and dissect the systemic interaction between unhealthy and healthy tissues in vitro. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2766, 2019.