Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 297(5): 101291, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34634301

RESUMEN

Metabolic dysfunction is a major driver of tumorigenesis. The serine/threonine kinase mechanistic target of rapamycin (mTOR) constitutes a key central regulator of metabolic pathways promoting cancer cell proliferation and survival. mTOR activity is regulated by metabolic sensors as well as by numerous factors comprising the phosphatase and tensin homolog/PI3K/AKT canonical pathway, which are often mutated in cancer. However, some cancers displaying constitutively active mTOR do not carry alterations within this canonical pathway, suggesting alternative modes of mTOR regulation. Since DEPTOR, an endogenous inhibitor of mTOR, was previously found to modulate both mTOR complexes 1 and 2, we investigated the different post-translational modification that could affect its inhibitory function. We found that tyrosine (Tyr) 289 phosphorylation of DEPTOR impairs its interaction with mTOR, leading to increased mTOR activation. Using proximity biotinylation assays, we identified SYK (spleen tyrosine kinase) as a kinase involved in DEPTOR Tyr 289 phosphorylation in an ephrin (erythropoietin-producing hepatocellular carcinoma) receptor-dependent manner. Altogether, our work reveals that phosphorylation of Tyr 289 of DEPTOR represents a novel molecular switch involved in the regulation of both mTOR complex 1 and mTOR complex 2.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Procesamiento Proteico-Postraduccional , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Células HEK293 , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Fosforilación , Serina-Treonina Quinasas TOR/genética , Tirosina/genética , Tirosina/metabolismo
2.
ACR Open Rheumatol ; 3(1): 3-7, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33274857

RESUMEN

OBJECTIVE: Interstitial lung disease (ILD) is a major cause of morbidity and mortality in connective tissue diseases (CTDs). We aimed to assess the effect of rituximab ± mycophenolate mofetil (MMF) compared with MMF on pulmonary function and prednisone dosage in patients with CTD-related ILD (CTD-ILD). METHODS: This retrospective study included 83 patients from Stanford and Centre Hospitalier de l'Universite de Montreal. Fifteen patients received rituximab ± MMF (rituximab group), and 68 patients received MMF only (control group). RESULTS: Median ILD duration at the start of treatment was longer in the rituximab group at 47 months (range: 4-170) versus 6.5 months (range: 0-164) in controls. Forced vital capacity (FVC) decreased by 3.0% (range: 11%-21%) after treatment in the rituximab group, whereas it increased by 2.0% (range: 14%-25%) in the control group (p = 0.025). Diffusing capacity of carbon monoxide (DLCO) decreased by 3.0% (range: 10%-12%) after treatment in the rituximab group, whereas it increased by 4.5% (range: 30%-36%) in the control group (p = 0.046). Mixed model analysis controlling for ILD duration, baseline DLCO, systemic sclerosis, pulmonary hypertension, and prednisone use showed no significant difference in FVC or DLCO between groups at 6 months or 1 year. The average daily prednisone dose score decreased after treatment in the rituximab group, whereas it remained unchanged in the control group (p = 0.017). CONCLUSION: Rituximab ± MMF did not significantly change pulmonary function compared with MMF alone, but it did result in a relative decrease in average daily prednisone dose in a population with recalcitrant CTD-ILD.

3.
Nucleic Acids Res ; 47(8): 4181-4197, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-30767021

RESUMEN

Src associated in mitosis (SAM68) plays major roles in regulating RNA processing events, such as alternative splicing and mRNA translation, implicated in several developmental processes. It was previously shown that SAM68 regulates the alternative splicing of the mechanistic target of rapamycin (mTor), but the mechanism regulating this process remains elusive. Here, we report that SAM68 interacts with U1 small nuclear ribonucleoprotein (U1 snRNP) to promote splicing at the 5' splice site in intron 5 of mTor. We also show that this direct interaction is mediated through U1A, a core-component of U1snRNP. SAM68 was found to bind the RRM1 domain of U1A through its C-terminal tyrosine rich region (YY domain). Deletion of the U1A-SAM68 interaction domain or mutation in SAM68-binding sites in intron 5 of mTor abrogates U1A recruitment and 5' splice site recognition by the U1 snRNP, leading to premature intron 5 termination and polyadenylation. Taken together, our results provide the first mechanistic study by which SAM68 modulates alternative splicing decision, by affecting U1 snRNP recruitment at 5' splice sites.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Precursores del ARN/genética , Empalme del ARN , Proteínas de Unión al ARN/genética , ARN/genética , Ribonucleoproteína Nuclear Pequeña U1/genética , Serina-Treonina Quinasas TOR/genética , Proteínas Adaptadoras Transductoras de Señales/deficiencia , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Línea Celular , Exones , Fibroblastos/citología , Fibroblastos/metabolismo , Eliminación de Gen , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Intrones , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Transporte de Proteínas , ARN/metabolismo , Precursores del ARN/metabolismo , Ribonucleoproteína Nuclear Pequeña U1/química , Ribonucleoproteína Nuclear Pequeña U1/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
4.
Biochem Cell Biol ; : 1-8, 2018 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-29707960

RESUMEN

Metal-responsive transcription factor-1 (MTF-1) is a metal-regulatory transcription factor essential for induction of the genes encoding metallothioneins (MTs) in response to transition metal ions. Activation of MTF-1 is dependent on the interaction of zinc with the zinc fingers of the protein. In addition, phosphorylation is essential for MTF-1 transactivation. We previously showed that inhibition of phosphoinositide 3-kinase (PI3K) abrogated Mt expression and metal-induced MTF-1 activation in human hepatocellular carcinoma (HCC) HepG2 and mouse L cells, thus showing that the PI3K signaling pathway positively regulates MTF-1 activity and Mt gene expression. However, it has also been reported that inhibition of PI3K has no significant effects on Mt expression in immortalized epithelial cells and increases Mt expression in HCC cells. To further characterize the role of the PI3K pathway on the activity of MTF-1, transfection experiments were performed in HEK293 and HepG2 cells in presence of glycogen synthase kinase-3 (GSK-3), mTOR-C1, and mTOR-C2 inhibitors, as well as of siRNAs targeting Phosphatase and TENsin homolog (PTEN). We showed that inhibition of the mTOR-C2 complex inhibits the activity of MTF-1 in HepG2 and HEK293 cells, while inhibition of the mTOR-C1 complex or of PTEN stimulates MTF-1 activity in HEK293 cells. These results confirm that the PI3K pathway positively regulates MTF-1 activity. Finally, we showed that GSK-3 is required for MTF-1 activation in response to zinc ions.

5.
Trends Cell Biol ; 27(10): 738-752, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28711227

RESUMEN

Gliomas and leukemias remain highly refractory to treatment, thus highlighting the need for new and improved therapeutic strategies. Mutations in genes encoding enzymes involved in the tricarboxylic acid (TCA) cycle, such as the isocitrate dehydrogenases 1 and 2 (IDH1/2), are frequently encountered in astrocytomas and secondary glioblastomas, as well as in acute myeloid leukemias; however, the precise molecular mechanisms by which these mutations promote tumorigenesis remain to be fully characterized. Gain-of-function mutations in IDH1/2 have been shown to stimulate production of the oncogenic metabolite R-2-hydroxyglutarate (R-2HG), which inhibits α-ketoglutarate (αKG)-dependent enzymes. We review recent advances on the elucidation of oncogenic functions of IDH1/2 mutations, and of the associated oncometabolite R-2HG, which link altered metabolism of cancer cells to epigenetics, RNA methylation, cellular signaling, hypoxic response, and DNA repair.


Asunto(s)
Epigénesis Genética/genética , Isocitrato Deshidrogenasa/genética , Mutación/genética , Oncogenes/genética , Transducción de Señal/genética , Animales , Neoplasias Encefálicas/genética , Carcinogénesis/genética , Humanos
6.
Nat Commun ; 7: 12700, 2016 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-27624942

RESUMEN

The identification of cancer-associated mutations in the tricarboxylic acid (TCA) cycle enzymes isocitrate dehydrogenases 1 and 2 (IDH1/2) highlights the prevailing notion that aberrant metabolic function can contribute to carcinogenesis. IDH1/2 normally catalyse the oxidative decarboxylation of isocitrate into α-ketoglutarate (αKG). In gliomas and acute myeloid leukaemias, IDH1/2 mutations confer gain-of-function leading to production of the oncometabolite R-2-hydroxyglutarate (2HG) from αKG. Here we show that generation of 2HG by mutated IDH1/2 leads to the activation of mTOR by inhibiting KDM4A, an αKG-dependent enzyme of the Jumonji family of lysine demethylases. Furthermore, KDM4A associates with the DEP domain-containing mTOR-interacting protein (DEPTOR), a negative regulator of mTORC1/2. Depletion of KDM4A decreases DEPTOR protein stability. Our results provide an additional molecular mechanism for the oncogenic activity of mutant IDH1/2 by revealing an unprecedented link between TCA cycle defects and positive modulation of mTOR function downstream of the canonical PI3K/AKT/TSC1-2 pathway.


Asunto(s)
Glutaratos/metabolismo , Isocitrato Deshidrogenasa/genética , Histona Demetilasas con Dominio de Jumonji/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Astrocitos/metabolismo , Ciclo del Ácido Cítrico , Glioma/genética , Células HEK293 , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Fosfohidrolasa PTEN/genética , Ubiquitinación , Proteínas con Repetición de beta-Transducina/metabolismo
7.
J Cell Sci ; 129(21): 4105-4117, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27637266

RESUMEN

Epithelial-to-mesenchymal transition (EMT) is a process by which cancer cells gain the ability to leave the primary tumor site and invade surrounding tissues. These metastatic cancer cells can further increase their plasticity by adopting an amoeboid-like morphology, by undergoing mesenchymal-to-amoeboid transition (MAT). We found that adhering cells produce spreading initiation centers (SICs), transient structures that are localized above nascent adhesion complexes, and share common biological and morphological characteristics associated with amoeboid cells. Meanwhile, spreading cells seem to return to a mesenchymal-like morphology. Thus, our results indicate that SIC-induced adhesion recapitulates events  that are associated with amoeboid-to-mesenchymal transition (AMT). We found that polyadenylated RNAs are enriched within SICs, blocking their translation decreased adhesion potential of metastatic cells that progressed through EMT. These results point to a so-far-unknown checkpoint that regulates cell adhesion and allows metastatic cells to alter adhesion strength to modulate their dissemination.


Asunto(s)
Biosíntesis de Proteínas , Migración Transendotelial y Transepitelial , Adhesión Celular , Línea Celular Tumoral , Forma de la Célula , Activación Enzimática , Transición Epitelial-Mesenquimal , Adhesiones Focales/metabolismo , GTP Fosfohidrolasas/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Mesodermo/metabolismo , Modelos Biológicos , Metástasis de la Neoplasia , Poliadenilación , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...