Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Rehabil Assist Technol Eng ; 10: 20556683231166574, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37077202

RESUMEN

Introduction: Task-specific neurorehabilitation is crucial to optimize hand recovery shortly after a stroke, but intensive neurorehabilitation remains limited in resource-constrained healthcare systems. This has led to a growing interest in the use of robotic gloves as an adjunct intervention to intensify hand-specific neurorehabilitation. This study aims to develop and assess the usability of an operating interface supporting such a technology coupled with a virtual environment through a user-centered design approach. Methods: Fourteen participants with hand hemiparesis following a stroke were invited to don the robotic glove before browsing through the operating interface and its functionalities, and perform two mobility exercises in a virtual environment. Feedback was collected for improving technology usability. Participants completed the System Usability Scale and ABILHAND questionnaires and their recommendations were gathered and prioritized in a Pugh Matrix. Results: The System Usability Scale (SUS) score for the operating interface was excellent (M = 87.0 SD = 11.6). A total of 74 recommendations to improve the user interface, calibration process, and exercise usability were identified. Conclusion: The application of a full cycle of user-centred design approach confirms the high level of usability of the system which is perceived by end users as acceptable and useful for intensifying neurorehabilitation.

2.
Osteoporos Int ; 31(5): 1007-1011, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31932962

RESUMEN

Many individuals with spinal cord injury (SCI) rely on wheelchairs as their primary mode of locomotion leading to reduced weight-bearing on the lower extremities, which contributes to severe bone loss and increased risk of fragility fractures. Engaging in a walking program may reverse this vicious cycle, as this promotes lower extremity weight-bearing and mobility, which may reduce bone loss and fragility fracture risk. However, fragility fracture risk associated with the use of wearable robotic exoskeletons (WREs) in individuals with SCI needs consideration. A 35-year-old man with chronic complete sensorimotor SCI (neurological level = T6) and low initial bone mineral density enrolled in a 6- to 8-week WRE-assisted walking program after successfully completing an initial clinical screening process and two familiarization sessions with the WRE. However, after the first training session with the WRE, he developed bilateral localized ankle edema. Training was suspended, and a CT-scan revealed bilateral calcaneal fractures, which healed with conservative treatment over a 12-week period. Opportunities for improving clinical screening and WRE design are explored. The relevance of developing clinical practice guidelines for safe initiation and progression of intensity during WRE-assisted walking programs is highlighted. This case of bilateral calcaneal fractures illustrates that aiming for "zero risk" during WRE-assisted walking programs may not be realistic. Although WREs are a relatively new technology, current evidence confirms their potential to greatly improve health and quality of life in individuals with chronic SCI. Hence, ensuring their safe use remains a key priority.


Asunto(s)
Dispositivo Exoesqueleto , Traumatismos de la Médula Espinal , Dispositivos Electrónicos Vestibles , Silla de Ruedas , Adulto , Humanos , Masculino , Calidad de Vida , Traumatismos de la Médula Espinal/complicaciones , Caminata
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...