Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Pest Manag Sci ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39132883

RESUMEN

The commercialization of 2,4-D (2,4-dichlorophenoxyacetic acid) latifolicide in 1945 marked the beginning of the selective herbicide market, with this active ingredient playing a pivotal role among commercial herbicides due to the natural tolerance of monocots compared with dicots. Due to its intricate mode of action, involving interactions within endogenous auxin signaling networks, 2,4-D was initially considered a low-risk herbicide to evolve weed resistance. However, the intensification of 2,4-D use has contributed to the emergence of 2,4-D-resistant broadleaf weeds, challenging earlier beliefs. This review explores 2,4-D tolerance in crops and evolved resistance in weeds, emphasizing an in-depth understanding of 2,4-D metabolic detoxification. Nine confirmed 2,4-D-resistant weed species, driven by rapid metabolism, highlight cytochrome P450 monooxygenases in Phase I and glycosyltransferases in Phase II as key enzymes. Resistance to 2,4-D may also involve impaired translocation associated with mutations in auxin/indole-3-acetic acid (Aux/IAA) co-receptor genes. Moreover, temperature variations affect 2,4-D efficacy, with high temperatures increasing herbicide metabolism rates and reducing weed control, while drought stress did not affect 2,4-D efficacy. Research on 2,4-D resistance has primarily focused on non-target-site resistance (NTSR) mechanisms, including 2,4-D metabolic detoxification, with limited exploration of the inheritance and genetic basis underlying these traits. Resistance to 2,4-D in weeds is typically governed by a single gene, either dominant or incompletely dominant, raising questions about gain-of-function or loss-of-function mutations that confer resistance. Future research should unravel the physiological and molecular-genetic basis of 2,4-D NTSR, exploring potential cross-resistance patterns and assessing fitness costs that may affect future evolution of auxin-resistant weeds. © 2024 Society of Chemical Industry.

2.
Genome Biol ; 25(1): 139, 2024 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802856

RESUMEN

Weeds are attractive models for basic and applied research due to their impacts on agricultural systems and capacity to swiftly adapt in response to anthropogenic selection pressures. Currently, a lack of genomic information precludes research to elucidate the genetic basis of rapid adaptation for important traits like herbicide resistance and stress tolerance and the effect of evolutionary mechanisms on wild populations. The International Weed Genomics Consortium is a collaborative group of scientists focused on developing genomic resources to impact research into sustainable, effective weed control methods and to provide insights about stress tolerance and adaptation to assist crop breeding.


Asunto(s)
Genómica , Malezas , Malezas/genética , Genómica/métodos , Control de Malezas/métodos , Genoma de Planta , Productos Agrícolas/genética , Resistencia a los Herbicidas/genética , Fitomejoramiento/métodos
3.
Pest Manag Sci ; 80(8): 3717-3725, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38483107

RESUMEN

BACKGROUND: Japanese brome (Bromus japonicus Thumb.) is one of the problematic annual weeds in winter wheat (Triticum aestivum L.) and is generally controlled by acetolactate synthase (ALS) inhibitors. Repeated use of the ALS inhibitor propoxycarbazone-Na resulted in the evolution of resistance to this herbicide in three B. japonicus populations, i.e., R1, R2, and R3 in Kansas (KS). However, the level of resistance and mechanism conferring resistance in these populations is unknown. The objectives of this research were to (i) evaluate the level of resistance to propoxycarbazone-Na in R1, R2, and R3 in comparison with a known susceptible population (S1), (ii) investigate the mechanism of resistance involved in conferring ALS-inhibitor resistance, and (iii) investigate the cross-resistance to other ALS inhibitors. RESULTS: Dose-response (0 to 16x; x = 44 g ai ha-1 of propoxycarbazone-Na) assay indicated 167, 125, and 667-fold resistance in R1, R2 and R3 populations, respectively, compared to S1 population. ALS gene sequencing confirmed the mutations resulting in amino acid substitutions, i.e., Pro-197-Thr (R3, R1)/Ser (R2, R1) bestowing resistance to these ALS inhibitors. Such amino acid substitutions also showed differential cross-resistance to sulfosulfuron, mesosulfuron-methyl, pyroxsulam, and imazamox among resistant populations. Pretreatment with malathion (a cytochrome P450 enzyme-inhibitor) followed by imazamox treatment suggested cross-resistance to this herbicide possibly via metabolism only in R3 population. CONCLUSION: Overall, these results confirm the first case of target-site based resistance to ALS inhibitors in B. japonicus in the US, highlighting the need for exploring herbicides with alternative modes of action to enhance weed control in winter wheat. © 2024 Society of Chemical Industry.


Asunto(s)
Acetolactato Sintasa , Bromus , Resistencia a los Herbicidas , Herbicidas , Proteínas de Plantas , Acetolactato Sintasa/genética , Acetolactato Sintasa/antagonistas & inhibidores , Acetolactato Sintasa/metabolismo , Bromus/enzimología , Bromus/efectos de los fármacos , Bromus/genética , Resistencia a los Herbicidas/genética , Herbicidas/farmacología , Kansas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/antagonistas & inhibidores , Malezas/efectos de los fármacos , Malezas/genética , Malezas/enzimología
4.
Plant Direct ; 8(1): e560, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38268857

RESUMEN

Auxin-mimic herbicides chemically mimic the phytohormone indole-3-acetic-acid (IAA). Within the auxin-mimic herbicide class, the herbicide fluroxypyr has been extensively used to control kochia (Bassia scoparia). A 2014 field survey for herbicide resistance in kochia populations across Colorado identified a putative fluroxypyr-resistant (Flur-R) population that was assessed for response to fluroxypyr and dicamba (auxin-mimics), atrazine (photosystem II inhibitor), glyphosate (EPSPS inhibitor), and chlorsulfuron (acetolactate synthase inhibitor). This population was resistant to fluroxypyr and chlorsulfuron but sensitive to glyphosate, atrazine, and dicamba. Subsequent dose-response studies determined that Flur-R was 40 times more resistant to fluroxypyr than a susceptible population (J01-S) collected from the same field survey (LD50 720 and 20 g ae ha-1, respectively). Auxin-responsive gene expression increased following fluroxypyr treatment in Flur-R, J01-S, and in a dicamba-resistant, fluroxypyr-susceptible line 9,425 in an RNA-sequencing experiment. In Flur-R, several transcripts with molecular functions for conjugation and transport were constitutively higher expressed, such as glutathione S-transferases (GSTs), UDP-glucosyl transferase (GT), and ATP binding cassette transporters (ABC transporters). After analyzing metabolic profiles over time, both Flur-R and J01-S rapidly converted [14C]-fluroxypyr ester, the herbicide formulation applied to plants, to [14C]-fluroxypyr acid, the biologically active form of the herbicide, and three unknown metabolites. The formation and flux of these metabolites were faster in Flur-R than J01-S, reducing the concentration of phytotoxic fluroxypyr acid. One unique metabolite was present in Flur-R that was not present in the J01-S metabolic profile. Gene sequence variant analysis specifically for auxin receptor and signaling proteins revealed the absence of non-synonymous mutations affecting auxin signaling and binding in candidate auxin target site genes, further supporting our hypothesis that non-target site metabolic degradation is contributing to fluroxypyr resistance in Flur-R.

5.
J Biol Chem ; 299(11): 105267, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37734554

RESUMEN

Herbicides are small molecules that act by inhibiting specific molecular target sites within primary plant metabolic pathways resulting in catastrophic and lethal consequences. The stress induced by herbicides generates reactive oxygen species (ROS), but little is known about the nexus between each herbicide mode of action (MoA) and their respective ability to induce ROS formation. Indeed, some herbicides cause dramatic surges in ROS levels as part of their primary MoA, whereas other herbicides may generate some ROS as a secondary effect of the stress they imposed on plants. In this review, we discuss the types of ROS and their respective reactivity and describe their involvement for each known MoA based on the new Herbicide Resistance Action Committee classification.


Asunto(s)
Herbicidas , Herbicidas/farmacología , Herbicidas/metabolismo , Estrés Oxidativo , Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales
6.
J Agric Food Chem ; 71(18): 6871-6881, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37104538

RESUMEN

Herbicide mixtures are used to increase the spectrum of weed control and to manage weeds with target-site resistance to some herbicides. However, the effect of mixtures on the evolution of herbicide resistance caused by enhanced metabolism is unknown. This study evaluated the effect of a fenoxaprop-p-ethyl and imazethapyr mixture on the evolution of herbicide resistance in Echinochloa crus-galli using recurrent selection at sublethal doses. The progeny from second generations selected with the mixture had lower control than parental plants or the unselected progeny. GR50 increased 1.6- and 2.6-fold after two selection cycles with the mixture in susceptible (POP1-S) and imazethapyr-resistant (POP2-IR) biotypes, respectively. There was evidence that recurrent selection with this sublethal mixture had the potential to evolve cross-resistance to diclofop, cyhalofop, sethoxydim, and quinclorac. Mixture selection did not cause increased relative expression for a set of analyzed genes (CYP71AK2, CYP72A122, CYP72A258, CYP81A12, CYP81A14, CYP81A21, CYP81A22, and GST1). Fenoxaprop, rather than imazethapyr, is the main contributor to the decreased control in the progenies after recurrent selection with the mixture in low doses. This is the first study reporting the effect of a herbicide mixture at low doses on herbicide resistance evolution. The lack of control using the mixture may result in decreased herbicide sensitivity of the weed progenies. Using mixtures may select important detoxifying genes that have the potential to metabolize herbicides in patterns that cannot currently be predicted. The use of fully recommended herbicide rates in herbicide mixtures is recommended to reduce the risk of this type of resistance evolution.


Asunto(s)
Echinochloa , Herbicidas , Herbicidas/farmacología , Herbicidas/metabolismo , Control de Malezas , Malezas/genética , Resistencia a los Herbicidas/genética
7.
J Agric Food Chem ; 70(49): 15380-15389, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36453610

RESUMEN

A 2,4-dichlorophenoxyactic acid (2,4-D)-resistant population of Amaranthus tuberculatus (common waterhemp) from Nebraska, USA, was previously found to have rapid metabolic detoxification of the synthetic auxin herbicide 2,4-D. We purified the main 2,4-D metabolites from resistant and susceptible plants, solved their structures by nuclear magnetic resonance (NMR) and high-resolution mass spectrometry (HRMS), and synthesized the metabolites to determine their in planta toxicity. Susceptible plants conjugated 2,4-D to aspartate to form 2,4-D-aspartic acid (2,4-D-Asp), while resistant plants had a unique metabolic profile where 2,4-D was hydroxylated into 5-OH-2,4-D, followed by conjugation into a sugar metabolite (2,4-D-5-O-d-glucopyranoside) and subsequent malonylation into 2,4-D-(6'-O-malonyl)-5-O-d-glucopyranoside. Toxicological studies on waterhemp and Arabidopsis thaliana confirmed that the hydroxylated metabolite lost its auxinic action and toxicity. In contrast, the 2,4-D-Asp metabolite found in susceptible plants retained some auxinic action and toxicity. These results demonstrate that 2,4-D-resistant A. tuberculatus evolved novel detoxification reactions not present in susceptible plants to rapidly metabolize 2,4-D, potentially mediated by cytochrome P450 enzymes that perform the initial 5-hydroxylation reaction. This novel mechanism is more efficient to detoxify 2,4-D and produces metabolites with lower toxicity compared to the aspartic acid conjugation found in susceptible waterhemp.


Asunto(s)
Amaranthus , Herbicidas , Amaranthus/metabolismo , Resistencia a los Herbicidas , Herbicidas/farmacología , Herbicidas/metabolismo , Ácido 2,4-Diclorofenoxiacético/farmacología , Ácido 2,4-Diclorofenoxiacético/metabolismo
8.
Pest Manag Sci ; 78(12): 5080-5089, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36039692

RESUMEN

BACKGROUND: Early detection of herbicide resistance in weeds is crucial for successful implementation of integrated weed management. We conducted a herbicide resistance survey of the winter annual grasses feral rye (Secale cereale), downy brome (Bromus tectorum), and jointed goatgrass (Aegilops cylindrica) from Colorado winter wheat production areas for resistance to imazamox and quizalofop. RESULTS: All samples were susceptible to quizalofop. All downy brome and jointed goatgrass samples were susceptible to imazamox. Out of 314 field collected samples, we identified three feral rye populations (named A, B, and C) that were imazamox resistant. Populations B and C had a target-site mechanism with mutations in the Ser653 residue of the acetolactate synthase (ALS) gene to Asn in B and to Thr in C. Both populations B and C had greatly reduced ALS in vitro enzyme inhibition by imazamox. ALS feral rye protein modeling showed that steric interactions induced by the amino acid substitutions at Ser653 impaired imazamox binding. Individuals from population A had no mutations in the ALS gene. The ALS enzyme from population A was equally sensitive to imazamox as to known susceptible feral rye populations. Imazamox was degraded two times faster in population A compared with a susceptible control. An oxidized imazamox metabolite formed faster in population A and this detoxification reaction was inhibited by malathion. CONCLUSION: Population A has a nontarget-site mechanism of enhanced imazamox metabolism that may be conferred by cytochrome P450 enzymes. This is the first report of both target-site and metabolism-based imazamox resistance in feral rye. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Acetolactato Sintasa , Herbicidas , Humanos , Secale , Herbicidas/farmacología , Resistencia a los Herbicidas/genética , Bromus , Proteínas de Plantas/genética
9.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35217601

RESUMEN

The natural auxin indole-3-acetic acid (IAA) is a key regulator of many aspects of plant growth and development. Synthetic auxin herbicides such as 2,4-D mimic the effects of IAA by inducing strong auxinic-signaling responses in plants. To determine the mechanism of 2,4-D resistance in a Sisymbrium orientale (Indian hedge mustard) weed population, we performed a transcriptome analysis of 2,4-D-resistant (R) and -susceptible (S) genotypes that revealed an in-frame 27-nucleotide deletion removing nine amino acids in the degron tail (DT) of the auxin coreceptor Aux/IAA2 (SoIAA2). The deletion allele cosegregated with 2,4-D resistance in recombinant inbred lines. Further, this deletion was also detected in several 2,4-D-resistant field populations of this species. Arabidopsis transgenic lines expressing the SoIAA2 mutant allele were resistant to 2,4-D and dicamba. The IAA2-DT deletion reduced binding to TIR1 in vitro with both natural and synthetic auxins, causing reduced association and increased dissociation rates. This mechanism of synthetic auxin herbicide resistance assigns an in planta function to the DT region of this Aux/IAA coreceptor for its role in synthetic auxin binding kinetics and reveals a potential biotechnological approach to produce synthetic auxin-resistant crops using gene-editing.


Asunto(s)
Ácido 2,4-Diclorofenoxiacético , Brassicaceae/genética , Resistencia a los Herbicidas/genética , Insecticidas , Proteínas de Plantas/genética , Receptores de Superficie Celular/genética , Eliminación de Secuencia , Brassicaceae/metabolismo , Dicamba , Simulación del Acoplamiento Molecular , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Unión Proteica , Conformación Proteica , ARN de Planta/genética , Receptores de Superficie Celular/metabolismo , Análisis de Secuencia de ARN/métodos
10.
Plant Sci ; 313: 111097, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34763850

RESUMEN

Safeners are chemical compounds used to improve selectivity and safety of herbicides in crops by activating genes that enhance herbicide metabolic detoxification. The genes activated by safeners in crops are similar to the genes causing herbicide resistance through increased metabolism in weeds. This work investigated the effect of the safener isoxadifen-ethyl (IS) in combination with fenoxaprop-p-ethyl (FE) on the evolution of herbicide resistance in Echinochloa crus-galli under recurrent selection. Reduced susceptibility was observed in the progeny after recurrent selection with both FE alone and with FE + IS for two generations (G2) compared to the parental population (G0). The resistance index found in G2 after FE + IS selection was similar as when FE was used alone, demonstrating that the safener did not increase the rate or magnitude of herbicide resistance evolution. G2 progeny selected with FE alone and the combination of FE + IS had increased survival to herbicides from other mechanisms of action relative to the parental G0 population. One biotype of G2 progeny had increased constitutive expression of glutathione-S-transferase (GST1) after recurrent selection with FE + IS. G2 progeny had increased expression of two P450 genes (CYP71AK2 and CYP72A122) following treatment with FE, while G2 progeny had increased expression of five P450 genes (CYP71AK2, CYP72A258, CYP81A12, CYP81A14 and CYP81A21) after treatment with FE + IS. Repeated selection with low doses of FE with or without the safener IS decreased E. crus-galli control and showed potential for cross-resistance evolution. Addition of safener did not further decrease herbicide sensitivity in second generation progeny; however, the recurrent use of safener in combination with FE resulted in safener-induced increased expression of several CYP genes. This is the first report using safener as an additional factor to study herbicide resistance evolution in weeds under experimental recurrent selection.


Asunto(s)
Echinochloa/genética , Echinochloa/fisiología , Resistencia a los Herbicidas/genética , Resistencia a los Herbicidas/fisiología , Herbicidas/metabolismo , Oxazoles/metabolismo , Propionatos/metabolismo , Brasil , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Genotipo , Control de Malezas
11.
Mol Ecol ; 30(21): 5343-5359, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34614274

RESUMEN

Genomic-based epidemiology can provide insight into the origins and spread of herbicide resistance mechanisms in weeds. We used kochia (Bassia scoparia) populations resistant to the herbicide glyphosate from across western North America to test the alternative hypotheses that (i) a single EPSPS gene duplication event occurred initially in the Central Great Plains and then subsequently spread to all other geographical areas now exhibiting glyphosate-resistant kochia populations or that (ii) gene duplication occurred multiple times in independent events in a case of parallel evolution. We used qPCR markers previously developed for measuring the structure of the EPSPS tandem duplication to investigate whether all glyphosate-resistant individuals had the same EPSPS repeat structure. We also investigated population structure using simple sequence repeat markers to determine the relatedness of kochia populations from across the Central Great Plains, Northern Plains and the Pacific Northwest. We found that the original EPSPS duplication genotype was predominant in the Central Great Plains where glyphosate resistance was first reported. We identified two additional EPSPS duplication genotypes, one having geographical associations with the Northern Plains and the other with the Pacific Northwest. The EPSPS duplication genotype from the Pacific Northwest seems likely to represent a second, independent evolutionary origin of a resistance allele. We found evidence of gene flow across populations and a general lack of population structure. The results support at least two independent evolutionary origins of glyphosate resistance in kochia, followed by substantial and mostly geographically localized gene flow to spread the resistance alleles into diverse genetic backgrounds.


Asunto(s)
Bassia scoparia , 3-Fosfoshikimato 1-Carboxiviniltransferasa/genética , Flujo Génico , Genómica , Glicina/análogos & derivados , Resistencia a los Herbicidas/genética , Humanos , Glifosato
12.
Mol Ecol ; 30(21): 5360-5372, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34637174

RESUMEN

The global invasion, and subsequent spread and evolution of weeds provides unique opportunities to address fundamental questions in evolutionary and invasion ecology. Amaranthus palmeri is a widespread glyphosate-resistant (GR) weed in the USA. Since 2015, GR populations of A. palmeri have been confirmed in South America, raising questions about introduction pathways and the importance of pre- vs. post-invasion evolution of GR traits. We used RAD-sequencing genotyping to characterize genetic structure of populations from Brazil, Argentina, Uruguay and the USA. We also quantified gene copy number of the glyphosate target, 5-enolpyruvyl-3-shikimate phosphate synthase (EPSPS), and the presence of an extrachromosomal circular DNA (eccDNA) replicon known to confer glyphosate resistance in USA populations. Populations in Brazil, Argentina and Uruguay were only weakly differentiated (pairwise FST  ≤0.043) in comparison to USA populations (mean pairwise FST  =0.161, range =0.068-0.258), suggesting a single major invasion event. However, elevated EPSPS copy number and the EPSPS replicon were identified in all populations from Brazil and Uruguay, but only in a single Argentinean population. These observations are consistent with independent in situ evolution of glyphosate resistance in Argentina, followed by some limited recent migration of the eccDNA-based mechanism from Brazil to Argentina. Taken together, our results are consistent with an initial introduction of A. palmeri into South America sometime before the 1980s, and local evolution of GR in Argentina, followed by a secondary invasion of GR A. palmeri with the unique eccDNA-based mechanism from the USA into Brazil and Uruguay during the 2010s.


Asunto(s)
Resistencia a los Herbicidas , Herbicidas , 3-Fosfoshikimato 1-Carboxiviniltransferasa/genética , Brasil , Glicina/análogos & derivados , Resistencia a los Herbicidas/genética , Herbicidas/farmacología , Glifosato
13.
Pest Manag Sci ; 77(7): 3036-3041, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33942963

RESUMEN

While herbicides are the most effective and widely adopted weed management approach, the evolution of multiple herbicide resistance in damaging weed species threatens the yield and profitability of many crops. Weeds accumulate multiple resistance mechanisms through sequential selection and/or gene flow, with long-range and international transport of herbicide-resistant weeds proving to be a serious issue. Metabolic resistance mechanisms can confer resistance across multiple sites of action and even to herbicides not yet discovered. When a new site of action herbicide is introduced to control a key driver weed, it likely will be one of very few effective available herbicide options for that weed in a specific crop due to the continuous use of herbicides over the years and the resulting accumulation of resistance mechanisms, placing it at even higher risk to be rapidly lost to resistance due to the high selection pressure it will experience. The number of available, effective herbicides for certain driver weeds is decreasing over time because the rate of resistance evolution is faster than the rate of new herbicide discovery. Effective monitoring for species movement and diagnostics for resistance should be deployed to rapidly identify emerging resistance to any new site of action. While innovation in herbicide discovery is urgently needed to combat the pressing issue of resistance in weeds, the rate of selection for herbicide resistance in weeds must be slowed through changes in the patterns of how herbicides are used. © 2021 Society of Chemical Industry. © 2021 Society of Chemical Industry.


Asunto(s)
Herbicidas , Productos Agrícolas/genética , Resistencia a los Herbicidas/genética , Herbicidas/farmacología , Malezas/genética , Control de Malezas
14.
Pest Manag Sci ; 77(5): 2477-2484, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33442897

RESUMEN

BACKGROUND: Amaranthus palmeri is an aggressive and prolific weed species with major impact on agricultural yield and is a prohibited noxious weed across the Midwest. Morphological identification of A. palmeri from other Amaranthus species is extremely difficult in seeds, which has led to genetic testing for seed identification in commercial seed lots. RESULTS: We created an inexpensive and reliable genetic test based on novel, species-specific, single nucleotide polymorphisms (SNPs) from GBS (Genotyping by Sequencing) data. We report three SNP-based genetic tests for identifying A. palmeri alone or in a mixed pool of Amaranthus spp. Sensitivity ranged from 99.8 to 100%, specificity from 99.59 to 100%. Accuracy for all three tests is > 99.7%. All three are capable of reliably detecting one A. palmeri seed in a pool of 200 Amaranthus spp. seeds. The test was validated across 20 populations of A. palmeri, along with eight other Amaranthus species, the largest and most genetically diverse panel of Amaranthus samples to date. CONCLUSION: Our work represents a marked improvement over existing commercial assays resulting in an identification assay that is (i) accurate, (ii) robust, (iii) easy to interpret and (iv) applicable to both leaf tissue and pools of up to 200 seeds. Included is a data transformation method for calling of closely grouped competitive fluorescence assays. We also present a comprehensive GBS dataset from the largest geographic panel of Amaranthus populations sequenced. Our approach serves as a model for developing markers for other difficult to identify species. © 2021 Society of Chemical Industry.


Asunto(s)
Amaranthus , Alelos , Amaranthus/genética , Secuencia de Bases , Malezas/genética , Semillas/genética
15.
Pest Manag Sci ; 77(1): 126-130, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32954607

RESUMEN

BACKGROUND: Evolution and spread of resistance to glyphosate in kochia [Bassia scoparia (L.) A.J. Scott] is a major challenge for the sustainability of glyphosate-resistant crop technology in this region. Dicamba offers a viable option to manage glyphosate-resistant kochia. However, the recent and rapid evolution of dicamba resistance in glyphosate-resistant kochia populations in Kansas (KS), and other states in the USA is a threat to the management of this weed. Our previous research suggests that two distinct mechanisms confer dicamba resistance in KS (KSUR) and NE (CSUR) kochia. CSUR kochia is dicamba-resistant due to a double mutation in an auxin and dicamba coreceptor gene (Aux/IAA16), and CSUR kochia plants show reduced dicamba translocation. However, the mechanism of dicamba resistance in KSUR is not known. The objective of this research was to determine if dicamba resistance in KSUR is due to a different mechanism and therefore evolved independently from CSUR by measuring whether the resistance traits are chromosomally linked. RESULTS: The F1 and F2 progenies from KSUR × CSUR were generated. Single dicamba rate tests were conducted using the F1 and F2 progeny. The results indicate that two different genes confer dicamba resistance in KSUR and CSUR; importantly, these two genes are not linked. CONCLUSION: This research provides evidence that different populations of kochia have independently evolved resistance to dicamba by different mechanisms, and we confirmed that the genes conferring resistance to the same herbicide in different populations are not chromosomally linked.


Asunto(s)
Chenopodiaceae , Herbicidas , Dicamba , Resistencia a los Herbicidas/genética , Herbicidas/farmacología , Kansas , Nebraska
16.
Plant Sci ; 300: 110631, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33180710

RESUMEN

Synthetic auxin herbicides are designed to mimic indole-3-acetic acid (IAA), an integral plant hormone affecting cell growth, development, and tropism. In this review, we explore target site genes in the auxin signaling pathway including SCFTIR1/AFB, Aux/IAA, and ARFs that are confirmed or proposed mechanisms for weed resistance to synthetic auxin herbicides. Resistance to auxin herbicides by metabolism, either by enhanced cytochrome P450 detoxification or by loss of pro-herbicide activation, is a major non-target-site resistance pathway. We speculate about potential fitness costs of resistance due to effects of resistance-conferring mutations, provide insight into the role of polyploidy in synthetic auxin resistance evolution, and address the genetic resources available for weeds. This knowledge will be the key to unlock the long-standing questions as to which components of the auxin signaling pathway are most likely to have a role in resistance evolution. We propose that an ambitious research effort into synthetic auxin herbicide/target site interactions is needed to 1) explain why some synthetic auxin chemical families have activity on certain dicot plant families but not others and 2) fully elucidate target-site cross-resistance patterns among synthetic auxin chemical families to guide best practices for resistance management.


Asunto(s)
Resistencia a los Herbicidas/genética , Resistencia a los Herbicidas/fisiología , Herbicidas/metabolismo , Ácidos Indolacéticos/metabolismo , Malezas/efectos de los fármacos , Transducción de Señal/genética , Regulación de la Expresión Génica de las Plantas , Reguladores del Crecimiento de las Plantas/metabolismo , Control de Malezas
17.
PLoS One ; 15(9): e0238818, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32913366

RESUMEN

The evolution of glyphosate resistance (GR) in weeds is an increasing problem. Glyphosate has been used intensively on wild poinsettia (Euphorbia heterophylla L.) populations for at least 20 years in GR crops within South America. We investigated the GR mechanisms in a wild poinsettia population from a soybean field in southern Brazil. The GR population required higher glyphosate doses to achieve 50% control (LD50) and 50% dry mass reduction (MR50) compared to a glyphosate susceptible (GS) population. The ratio between the LD50 and MR50 of GR and GS resulted in resistance factors (RF) of 6.9-fold and 6.1-fold, respectively. Shikimate accumulated 6.7 times more in GS than in GR when leaf-discs were incubated with increasing glyphosate concentrations. No differences were found between GR and GS regarding non-target-site mechanisms. Neither population metabolized glyphosate to significant levels following treatment with 850 g ha-1 glyphosate. Similar levels of 14C-glyphosate uptake and translocation were observed between the two populations. No differences in EPSPS expression were found between GS and GR. Two target site mutations were found in all EPSPS alleles of homozygous resistant plants: Thr102Ile + Pro106Thr (TIPT-mutation). Heterozygous individuals harbored both alleles, wild-type and TIPT. Half of GR individuals were heterozygous, suggesting that resistance is still evolving in the population. A genotyping assay was developed based on the Pro106Thr mutation, demonstrating high efficiency to identify homozygous, heterozygous or wild-type EPSPS sequences across different plants. This is the first report of glyphosate-resistant wild-poinsettia harboring an EPSPS double mutation (TIPT) in the same plant.


Asunto(s)
3-Fosfoshikimato 1-Carboxiviniltransferasa/genética , Euphorbia/genética , Glicina/análogos & derivados , Resistencia a los Herbicidas/genética , Brasil , Productos Agrícolas/crecimiento & desarrollo , Euphorbia/efectos de los fármacos , Glicina/farmacología , Herbicidas/farmacología , Mutación , Proteínas de Plantas/genética , Malezas/efectos de los fármacos , Malezas/genética , Ácido Shikímico/metabolismo , Glycine max/crecimiento & desarrollo , Control de Malezas/métodos , Glifosato
18.
Genome Biol Evol ; 12(12): 2267-2278, 2020 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-32915951

RESUMEN

In the last decade, Amaranthus tuberculatus has evolved resistance to 2,4-dichlorophenoxyacetic acid (2,4-D) and 4-hydroxyphenylpyruvate dioxygenase inhibitors in multiple states across the midwestern United States. Two populations resistant to both mode-of-action groups, one from Nebraska (NEB) and one from Illinois (CHR), were studied using an RNA-seq approach on F2 mapping populations to identify the genes responsible for resistance. Using both an A. tuberculatus transcriptome assembly and a high-quality grain amaranth (A. hypochondriacus) genome as references, differential transcript and gene expression analyses were conducted to identify genes that were significantly over- or underexpressed in resistant plants. When these differentially expressed genes (DEGs) were mapped on the A. hypochondriacus genome, physical clustering of the DEGs was apparent along several of the 16 A. hypochondriacus scaffolds. Furthermore, single-nucleotide polymorphism calling to look for resistant-specific (R) variants, and subsequent mapping of these variants, also found similar patterns of clustering. Specifically, regions biased toward R alleles overlapped with the DEG clusters. Within one of these clusters, allele-specific expression of cytochrome  P450  81E8 was observed for 2,4-D resistance in both the CHR and NEB populations, and phylogenetic analysis indicated a common evolutionary origin of this R allele in the two populations.


Asunto(s)
Amaranthus/genética , Resistencia a los Herbicidas/genética , Amaranthus/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Familia de Multigenes , Malezas/genética
20.
J Biol Chem ; 295(30): 10307-10330, 2020 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-32430396

RESUMEN

The widely successful use of synthetic herbicides over the past 70 years has imposed strong and widespread selection pressure, leading to the evolution of herbicide resistance in hundreds of weed species. Both target-site resistance (TSR) and nontarget-site resistance (NTSR) mechanisms have evolved to most herbicide classes. TSR often involves mutations in genes encoding the protein targets of herbicides, affecting the binding of the herbicide either at or near catalytic domains or in regions affecting access to them. Most of these mutations are nonsynonymous SNPs, but polymorphisms in more than one codon or entire codon deletions have also evolved. Some herbicides bind multiple proteins, making the evolution of TSR mechanisms more difficult. Increased amounts of protein target, by increased gene expression or by gene duplication, are an important, albeit less common, TSR mechanism. NTSR mechanisms include reduced absorption or translocation and increased sequestration or metabolic degradation. The mechanisms that can contribute to NTSR are complex and often involve genes that are members of large gene families. For example, enzymes involved in herbicide metabolism-based resistances include cytochromes P450, GSH S-transferases, glucosyl and other transferases, aryl acylamidase, and others. Both TSR and NTSR mechanisms can combine at the individual level to produce higher resistance levels. The vast array of herbicide-resistance mechanisms for generalist (NTSR) and specialist (TSR and some NTSR) adaptations that have evolved over a few decades illustrate the evolutionary resilience of weed populations to extreme selection pressures. These evolutionary processes drive herbicide and herbicide-resistant crop development and resistance management strategies.


Asunto(s)
Sistema Enzimático del Citocromo P-450/biosíntesis , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Resistencia a los Herbicidas/fisiología , Herbicidas/farmacología , Proteínas de Plantas/biosíntesis , Plantas/enzimología , Aclimatación , Herbicidas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...