Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 209
Filtrar
1.
Molecules ; 29(8)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38675561

RESUMEN

The search for novel effective TAAR1 ligands continues to draw great attention due to the wide range of pharmacological applications related to TAAR1 targeting. Herein, molecular docking studies of known TAAR1 ligands, characterized by an oxazoline core, have been performed in order to identify novel promising chemo-types for the discovery of more active TAAR1 agonists. In particular, the oxazoline-based compound S18616 has been taken as a reference compound for the computational study, leading to the development of quite flat and conformationally locked ligands. The choice of a "Y-shape" conformation was suggested for the design of TAAR1 ligands, interacting with the protein cavity delimited by ASP103 and aromatic residues such as PHE186, PHE195, PHE268, and PHE267. The obtained results allowed us to preliminary in silico screen an in-house series of pyrimidinone-benzimidazoles (1a-10a) as a novel scaffold to target TAAR1. Combined ligand-based (LBCM) and structure based (SBCM) computational methods suggested the biological evaluation of compounds 1a-10a, leading to the identification of derivatives 1a-3a (hTAAR1 EC50 = 526.3-657.4 nM) as promising novel TAAR1 agonists.


Asunto(s)
Simulación del Acoplamiento Molecular , Receptores Acoplados a Proteínas G , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/química , Humanos , Ligandos , Relación Estructura-Actividad , Modelos Moleculares , Unión Proteica , Sitios de Unión , Oxazoles/química , Oxazoles/farmacología , Bencimidazoles/química , Bencimidazoles/farmacología , Estructura Molecular , Descubrimiento de Drogas
2.
Biomedicines ; 12(4)2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38672247

RESUMEN

Trace amines are a separate, independent group of biogenic amines, close in structure to classical monoamine neurotransmitters such as dopamine, serotonin, and norepinephrine that include many products of the endogenous or bacteria-mediated decarboxylation of amino acids. A family of G protein-coupled trace amine-associated receptors (in humans, TAAR1, TAAR2, TAAR5, TAAR6, TAAR8, and TAAR9) that senses trace amines was discovered relatively recently. They are mostly investigated for their involvement in the olfaction of volatile amines encoding innate behaviors and their potential contribution to the pathogenesis of neuropsychiatric disorders, but the expression of the TAAR family of receptors is also observed in various populations of cells in the immune system. This review is focused on the basic information of the interaction of trace amines and their receptors with cells of the general immune systems of humans and other mammals. We also overview the available data on TAARs' role in the function of individual populations of myeloid and lymphoid cells. With further research on the regulatory role of the trace amine system in immune functions and on uncovering the contribution of these processes to the pathogenesis of the immune response, a significant advance in the field could be expected. Furthermore, the determination of the molecular mechanisms of TAARs' involvement in immune system regulation and the further investigation of their potential chemotactic role could bring about the development of new approaches for the treatment of disorders related to immune system dysfunctions.

3.
Int J Mol Sci ; 25(8)2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38673903

RESUMEN

Cardiotonic steroids (CTSs), such as digoxin, are used for heart failure treatment. However, digoxin permeates the brain-blood barrier (BBB), affecting central nervous system (CNS) functions. Finding a CTS that does not pass through the BBB would increase CTSs' applicability in the clinic and decrease the risk of side effects on the CNS. This study aimed to investigate the tissue distribution of the CTS ouabain following intraperitoneal injection and whether ouabain passes through the BBB. After intraperitoneal injection (1.25 mg/kg), ouabain concentrations were measured at 5 min, 15 min, 30 min, 1 h, 3 h, 6 h, and 24 h using HPLC-MS in brain, heart, liver, and kidney tissues and blood plasma in C57/black mice. Ouabain was undetectable in the brain tissue. Plasma: Cmax = 882.88 ± 21.82 ng/g; Tmax = 0.08 ± 0.01 h; T1/2 = 0.15 ± 0.02 h; MRT = 0.26 ± 0.01. Cardiac tissue: Cmax = 145.24 ± 44.03 ng/g (undetectable at 60 min); Tmax = 0.08 ± 0.02 h; T1/2 = 0.23 ± 0.09 h; MRT = 0.38 ± 0.14 h. Kidney tissue: Cmax = 1072.3 ± 260.8 ng/g; Tmax = 0.35 ± 0.19 h; T1/2 = 1.32 ± 0.76 h; MRT = 1.41 ± 0.71 h. Liver tissue: Cmax = 2558.0 ± 382.4 ng/g; Tmax = 0.35 ± 0.13 h; T1/2 = 1.24 ± 0.7 h; MRT = 0.98 ± 0.33 h. Unlike digoxin, ouabain does not cross the BBB and is eliminated quicker from all the analyzed tissues, giving it a potential advantage over digoxin in systemic administration. However, the inability of ouabain to pass though the BBB necessitates intracerebral administration when used to investigate its effects on the CNS.


Asunto(s)
Ratones Endogámicos C57BL , Ouabaína , Animales , Distribución Tisular , Inyecciones Intraperitoneales , Ratones , Masculino , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Espectrometría de Masas/métodos , Riñón/metabolismo , Riñón/efectos de los fármacos , Hígado/metabolismo , Hígado/efectos de los fármacos , Cromatografía Líquida de Alta Presión/métodos , Miocardio/metabolismo , Cardiotónicos/farmacocinética , Cardiotónicos/farmacología , Cardiotónicos/administración & dosificación
4.
Front Mol Neurosci ; 16: 1299297, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38076209

RESUMEN

Dopamine is extremely important for the multiple functions of the brain and spinal cord including locomotor behavior. Extracellular dopamine levels are controlled by the membrane dopamine transporter (DAT), and animals lacking DAT (DAT-KO) are characterized by hyperdopaminergia and several alterations of locomotion including hyperactivity. Neuronal mechanisms of such altered locomotor behavior are still not fully understood. We believe that in hyperdopaminergic animals both the spinal and brain neuronal networks involved in locomotion are modified. Using the c-fos technique, we studied activated neuronal networks of the spinal cord and two brainstem structures related to locomotor control and being under the strong dopaminergic influence, the cuneiform nucleus (CnF) and ventrolateral periaqueductal gray (VLPAG), in wild-type (DAT-WT) and DAT-KO rats. In the spinal cord, most c-fos-positive cells were located in the dorsal laminae II-IV and in the central gray matter (laminae V-VI). No differences were revealed for the central areas. As for the dorsal areas, in the DAT-WT group, labeled cells mostly occupied the lateral region, whereas, in the DAT-KO group, c-fos-positive cells were observed in both medial and lateral regions in some animals or in the medial regions in some animals. In the brainstem of the DAT-WT group, approximately the same number of labeled cells were found in the CnF and VLPAG, but in the DAT-KO group, the VLPAG contained a significantly smaller number of c-fos-positive cells compared to the CnF. Thereby, our work indicates an imbalance in the sensorimotor networks located within the dorsal horns of the spinal cord as well as a disbalance in the activity of brainstem networks in the DAT-deficient animals.

5.
Pharmaceuticals (Basel) ; 16(11)2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-38004497

RESUMEN

Trace amine-associated receptor 1 (TAAR1) is an attractive target for the design of innovative drugs to be applied in diverse pharmacological settings. Due to a non-negligible structural similarity with endogenous ligands, most of the agonists developed so far resulted in being affected by a low selectivity for TAAR1 with respect to other monoaminergic G protein-coupled receptors, like the adrenoreceptors. This study utilized comparative molecular docking studies and quantitative-structure activity relationship (QSAR) analyses to unveil key structural differences between TAAR1 and alpha2-adrenoreceptor (α2-ADR), with the aim to design novel TAAR1 agonists characterized by a higher selectivity profile and reduced off-target effects. While the presence of hydrophobic motives is encouraged towards both the two receptors, the introduction of polar/positively charged groups and the ligand conformation deeply affect the TAAR1 or α2-ADR putative selectivity. These computational methods allowed the identification of the α2A-ADR agonist guanfacine as an attractive TAAR1-targeting lead compound, demonstrating nanomolar activity in vitro. In vivo exploration of the efficacy of guanfacine showed that it is able to decrease the locomotor activity of dopamine transporter knockout (DAT-KO) rats. Therefore, guanfacine can be considered as an interesting template molecule worthy of structural optimization. The dual activity of guanfacine on both α2-ADR and TAAR1 signaling and the related crosstalk between the two pathways will deserve more in-depth investigation.

6.
Biomedicines ; 11(11)2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-38001881

RESUMEN

Biogenic amines dopamine (DA) and serotonin (5-HT) are among the most significant monoaminergic neurotransmitters in the central nervous system (CNS). Separately, the physiological roles of DA and 5-HT have been studied in detail, and progress has been made in understanding their roles in normal and various pathological conditions (Parkinson's disease, schizophrenia, addiction, depression, etc.). In this article we showed that knockout of the gene encoding DAT leads not only to a profound dysregulation of dopamine neurotransmission in the striatum but also in the midbrain, prefrontal cortex, hippocampus, medulla oblongata and spinal cord. Furthermore, significant changes were observed in the production of mRNA of enzymes of monoamine metabolism, as well as to a notable alteration in the tissue level of serotonin, most clearly manifested in the cerebellum and the spinal cord. The observed region-specific changes in the tissue levels of serotonin and in the expression of dopamine and serotonergic metabolism enzymes in rats with an excess of dopamine can indicate important consequences for the pharmacotherapy of drugs that modulate the dopaminergic system. The drugs that affect the dopaminergic system could potently affect the serotonergic system, and this fact is important to consider when predicting their possible therapeutic or side effects.

7.
Biomolecules ; 13(11)2023 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-38002300

RESUMEN

Currently, metabolic syndrome treatment includes predominantly pharmacological symptom relief and complex lifestyle changes. Trace amines and their receptor systems modulate signaling pathways of dopamine, norepinephrine, and serotonin, which are involved in the pathogenesis of this disorder. Trace amine-associated receptor 1 (TAAR1) is expressed in endocrine organs, and it was revealed that TAAR1 may regulate insulin secretion in pancreatic islet ß-cells. For instance, accumulating data demonstrate the positive effect of TAAR1 agonists on the dynamics of metabolic syndrome progression and MetS-associated disease development. The role of other TAARs (TAAR2, TAAR5, TAAR6, TAAR8, and TAAR9) in the islet's function is much less studied. In this review, we summarize the evidence of TAARs' contribution to the metabolic syndrome pathogenesis and regulation of insulin secretion in pancreatic islets. Additionally, by the analysis of public transcriptomic data, we demonstrate that TAAR1 and other TAAR receptors are expressed in the pancreatic islets. We also explore associations between the expression of TAARs mRNA and other genes in studied samples and demonstrate the deregulation of TAARs' functional associations in patients with metabolic diseases compared to healthy donors.


Asunto(s)
Islotes Pancreáticos , Síndrome Metabólico , Humanos , Síndrome Metabólico/metabolismo , Secreción de Insulina , Aminas/metabolismo , Transducción de Señal , Islotes Pancreáticos/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
8.
J Chem Inf Model ; 63(21): 6667-6680, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37847527

RESUMEN

Trace amine-associated receptors (TAARs) were discovered in 2001 as new members of class A G protein-coupled receptors (GPCRs). With the only exception of TAAR1, TAAR members (TAAR2-9, also known as noncanonical olfactory receptors) were originally described exclusively in the olfactory epithelium and believed to mediate the innate perception of volatile amines. However, most noncanonical olfactory receptors are still orphan receptors. Given its recently discovered nonolfactory expression and therapeutic potential, TAAR5 has been the focus of deorphanization campaigns that led to the discovery of a few druglike antagonists. Here, we report four novel TAAR5 antagonists identified through high-throughput screening, which, along with the four ligands published in the literature, constituted our starting point to design a computational strategy for the identification of TAAR5 ligands. We developed a structure-based virtual screening protocol that allowed us to identify three new TAAR5 antagonists with a hit rate of 10%. Despite lacking an experimental structure, we accurately modeled the TAAR5 binding site by integrating comparative sequence- and structure-based analyses of serotonin receptors with homology modeling and side-chain optimization. In summary, we have identified seven new TAAR5 antagonists that could serve as lead candidates for the development of new treatments for depression, anxiety, and neurodegenerative diseases.


Asunto(s)
Receptores Odorantes , Animales , Ratones , Receptores Acoplados a Proteínas G/química , Aminas , Sitios de Unión , Ligandos
9.
Int J Mol Sci ; 24(20)2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37894992

RESUMEN

Trace amine-associated receptors (TAARs), which were discovered only in 2001, are known to be involved in the regulation of a spectrum of neuronal processes and may play a role in the pathogenesis of a number of neuropsychiatric diseases, such as schizophrenia and others. We have previously shown that TAARs also have interconnections with the regulation of neurogenesis and, in particular, with the neurogenesis of dopamine neurons, but the exact mechanisms of this are still unknown. In our work we analyzed the expression of TAARs (TAAR1, TAAR2, TAAR5, TAAR6, TAAR8 and TAAR9) in cells from the human substantia nigra and ventral tegmental areas and in human pluripotent stem cells at consecutive stages of their differentiation to dopaminergic neurons, using RNA sequencing data from open databases, and TaqMan PCR data from the differentiation of human induced pluripotent stem cells in vitro. Detectable levels of TAARs expression were found in cells at the pluripotent stages, and the dynamic of their expression had a trend of increasing with the differentiation and maturation of dopamine neurons. The expression of several TAAR types (particularly TAAR5) was also found in human dopaminergic neuron-enriched zones in the midbrain. This is the first evidence of TAARs expression during neuronal differentiation, which can help to approach an understanding of the role of TAARs in neurogenesis.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes , Humanos , Neuronas Dopaminérgicas/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Diferenciación Celular/genética , Células Madre Pluripotentes/metabolismo , Aminas/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
10.
Biomolecules ; 13(9)2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37759760

RESUMEN

Currently, the contribution of trace amine-associated receptors (TAARs) to breast cancer (BC) is recognized, but their associations with various pathological characteristics are not yet understood. There is accumulated transcriptomic data for BC tumors, which are represented in publicly accessible databases. We estimated TAARs' (including TAAR1, TAAR2, TAAR5, TAAR6, TAAR8, and TAAR9) associations with BC stage, grade, and molecular subtypes in these data and identified that the expression of all TAARs was associated with more unfavorable cancer subtypes, including basal-like and HER2-positive tumors. Also, the significant upregulation of all TAARs was demonstrated in circulating tumor cells compared to the metastatic lesions. Considering that co-expressed genes are more likely to be involved in the same biologic processes, we analyzed genes that are co-expressed with TAARs in BC. These gene sets were enriched with the genes of the olfactory transduction pathway and neuroactive ligand-receptor interaction participants. TAARs are co-expressed with G-protein-coupled receptors of monoamine neurotransmitters including dopamine, norepinephrine, and serotonin as well as with other neuroactive ligand-specific receptors. Since TAAR1 is able to modulate the activity of monoamine receptors that are involved in the regulation of BC growth, TAAR1 and potentially other TAARs may be regarded as prospective therapeutic targets for breast cancer.

11.
Biomolecules ; 13(7)2023 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-37509143

RESUMEN

(1) Background: There is an urgent need for effective treatments for cocaine use disorder (CUD), and new pharmacological approaches targeting epigenetic mechanisms appear to be promising options for the treatment of this disease. Dopamine Transporter (DAT) transgenic rats recently have been proposed as a new animal model for studying susceptibility to CUD. (2) Methods: DAT transgenic rats were treated chronically with cocaine (10 mg/kg) for 8 days, and the expression of epigenetic modulators, Lysine Demethylase 6B (KDM6B) and Bromodomain-containing protein 4 (BRD4), was examined in the prefrontal cortex (PFC). (3) Results: We show that only full knockout (KO) of DAT impacts basal levels of KDM6B in females. Additionally, cocaine altered the expression of both epigenetic markers in a sex- and genotype-dependent manner. In response to chronic cocaine, KDM6B expression was decreased in male rats with partial DAT mutation (HET), while no changes were observed in wild-type (WT) or KO rats. Indeed, while HET male rats have reduced KDM6B and BRD4 expression, HET female rats showed increased KDM6B and BRD4 expression levels, highlighting the impact of sex on epigenetic mechanisms in response to cocaine. Finally, both male and female KO rats showed increased expression of BRD4, but only KO females exhibited significantly increased KDM6B expression in response to cocaine. Additionally, the magnitude of these effects was bigger in females when compared to males for both epigenetic enzymes. (4) Conclusions: This preliminary study provides additional support that targeting KDM6B and/or BRD4 may potentially be therapeutic in treating addiction-related behaviors in a sex-dependent manner.


Asunto(s)
Cocaína , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática , Ratones , Ratas , Masculino , Femenino , Animales , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Cocaína/farmacología , Ratas Transgénicas , Proteínas Nucleares/genética , Ratones Noqueados , Factores de Transcripción/genética , Epigénesis Genética
12.
Biomedicines ; 11(7)2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-37509460

RESUMEN

In recent years, enough evidence has accumulated to assert that cardiotonic steroids, Na+,K+-ATPase ligands, play an integral role in the physiological and pathophysiological processes in the body. However, little is known about the function of these compounds in the central nervous system. Endogenous cardiotonic steroids are involved in the pathogenesis of affective disorders, including depression and bipolar disorder, which are linked to dopaminergic system dysfunction. Animal models have shown that the cardiotonic steroid ouabain induces mania-like behavior through dopamine-dependent intracellular signaling pathways. In addition, mutations in the alpha subunit of Na+,K+-ATPase lead to the development of neurological pathologies. Evidence from animal models confirms the neurological consequences of mutations in the Na+,K+-ATPase alpha subunit. This review is dedicated to discussing the role of cardiotonic steroids and Na+,K+-ATPase in dopaminergic system pathologies-both the evidence supporting their involvement and potential pathways along which they may exert their effects are evaluated. Since there is an association between affective disorders accompanied by functional alterations in the dopaminergic system and neurological disorders such as Parkinson's disease, we extend our discussion to the role of Na+,K+-ATPase and cardiotonic steroids in neurodegenerative diseases as well.

13.
Biomedicines ; 11(7)2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37509596

RESUMEN

Dopamine (DA) is the critical neurotransmitter involved in the unconscious control of muscle tone and body posture. We evaluated the general motor capacities and muscle responses to postural disturbance in three conditions: normal DA level (wild-type rats, WT), mild DA deficiency (WT after administration of α-methyl-p-tyrosine-AMPT, that blocks DA synthesis), and severe DA depletion (DAT-KO rats after AMPT). The horizontal displacements in WT rats elicited a multi-component EMG corrective response in the flexor and extensor muscles. Similar to the gradual progression of DA-related diseases, we observed different degrees of bradykinesia, rigidity, and postural instability after AMPT. The mild DA deficiency impaired the initiation pattern of corrective responses, specifically delaying the extensor muscles' activity ipsilaterally to displacement direction and earlier extensor activity from the opposite side. DA depletion in DAT-KO rats after AMPT elicited tremors, general stiffness, and akinesia, and caused earlier response to horizontal displacements in the coactivated flexor and extensor muscles bilaterally. The data obtained show the specific role of DA in postural reactions and suggest that this experimental approach can be used to investigate sensorimotor control in different dopamine-deficient states and to model DA-related diseases.

14.
Biomedicines ; 11(7)2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37509616

RESUMEN

All antipsychotics currently used in clinic block D2 dopamine receptors. Trace amine-associated receptor 1 is emerging as a new therapeutic target for schizophrenia and several other neuropsychiatric disorders. SEP-363856 (International Nonproprietary Name: Ulotaront) is an investigational antipsychotic drug with a novel mechanism of action that does not involve antagonism of dopamine D2 receptors. Ulotaront is an agonist of trace amine-associated receptor 1 and serotonin 5-HT1A receptors, but can modulate dopamine neurotransmission indirectly. In 2019, the United States Food and Drug Administration granted Breakthrough Therapy Designation for ulotaront for the treatment of schizophrenia. Phase 2 clinical studies indicated that ulotaront can reduce both positive and negative symptoms of schizophrenia without causing the extrapyramidal or metabolic side effects that are inherent to most currently used antipsychotics. At present, it is in phase 3 clinical development for the treatment of schizophrenia and is expected to be introduced into clinical practice in 2023-2024. Clinical studies evaluating the potential efficacy of ulotaront in Parkinson's disease psychosis, generalized anxiety disorder, and major depressive disorder have also been started. The aim of this scoping review is to summarize all currently available preclinical and clinical evidence on the utility of ulotaront in the treatment of schizophrenia. Here, we show the main characteristics and distinctive features of this drug. Perspectives and limitations on the potential use of ulotaront in the pharmacotherapy of several other neuropsychiatric disorders are also discussed.

15.
Biomolecules ; 13(5)2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37238676

RESUMEN

The key element of dopamine (DA) neurotransmission is undoubtedly DA transporter (DAT), a transmembrane protein responsible for the synaptic reuptake of the mediator. Changes in DAT's function can be a key mechanism of pathological conditions associated with hyperdopaminergia. The first strain of gene-modified rodents with a lack of DAT were created more than 25 years ago. Such animals are characterized by increased levels of striatal DA, resulting in locomotor hyperactivity, increased levels of motor stereotypes, cognitive deficits, and other behavioral abnormalities. The administration of dopaminergic and pharmacological agents affecting other neurotransmitter systems can mitigate those abnormalities. The main purpose of this review is to systematize and analyze (1) known data on the consequences of changes in DAT expression in experimental animals, (2) results of pharmacological studies in these animals, and (3) to estimate the validity of animals lacking DAT as models for discovering new treatments of DA-related disorders.


Asunto(s)
Proteínas de Transporte de Dopamina a través de la Membrana Plasmática , Roedores , Animales , Roedores/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Transmisión Sináptica
16.
J Neural Transm (Vienna) ; 130(9): 1097-1112, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36792833

RESUMEN

The enzyme dimethylarginine dimethylaminohydrolase 1 (DDAH1) plays a pivotal role in the regulation of nitric oxide levels by degrading the main endogenous nitric oxide synthase inhibitor asymmetric dimethylarginine (ADMA). Growing evidence highlight the potential implication of DDAH/ADMA axis in the etiopathogenesis of several neuropsychiatric and neurological disorders, yet the underlying molecular mechanisms remain elusive. In this study, we sought to investigate the role of DDAH1 in behavioral endophenotypes with neuropsychiatric relevance. To achieve this, a global DDAH1 knock-out (DDAH1-ko) mouse strain was employed. Behavioral testing and brain region-specific neurotransmitter profiling have been conducted to assess the effect of both genotype and sex. DDAH1-ko mice exhibited increased exploratory behavior toward novel objects, altered amphetamine response kinetics and decreased dopamine metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) level in the piriform cortex and striatum. Females of both genotypes showed the most robust amphetamine response. These results support the potential implication of the DDAH/ADMA pathway in central nervous system processes shaping the behavioral outcome. Yet, further experiments are required to complement the picture and define the specific brain-regions and mechanisms involved.


Asunto(s)
Anfetamina , Dopamina , Animales , Femenino , Ratones , Amidohidrolasas/genética , Amidohidrolasas/metabolismo , Anfetamina/farmacología , Inhibidores Enzimáticos/farmacología , Genotipo , Ratones Noqueados , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa/genética
17.
Int J Mol Sci ; 24(2)2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36674941

RESUMEN

Elaboration of protocols for differentiation of human pluripotent stem cells to dopamine neurons is an important issue for development of cell replacement therapy for Parkinson's disease. A number of protocols have been already developed; however, their efficiency and specificity still can be improved. Investigating the role of signaling cascades, important for neurogenesis, can help to solve this problem and to provide a deeper understanding of their role in neuronal development. Notch signaling plays an essential role in development and maintenance of the central nervous system after birth. In our study, we analyzed the effect of Notch activation and inhibition at the early stages of differentiation of human induced pluripotent stem cells to dopaminergic neurons. We found that, during the first seven days of differentiation, the cells were not sensitive to the Notch inhibition. On the contrary, activation of Notch signaling during the same time period led to significant changes and was associated with an increase in expression of genes, specific for caudal parts of the brain, a decrease of expression of genes, specific for forebrain, as well as a decrease of expression of genes, important for the formation of axons and dendrites and microtubule stabilizing proteins.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes , Humanos , Neuronas Dopaminérgicas/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Diferenciación Celular , Células Madre Pluripotentes/metabolismo , Transducción de Señal , Receptores Notch/metabolismo
18.
Biomedicines ; 11(1)2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36672730

RESUMEN

Investigation of the precise mechanisms of attention deficit and hyperactivity disorder (ADHD) and other dopamine-associated conditions is crucial for the development of new treatment approaches. In this study, we assessed the effects of repeated and acute administration of α2A-adrenoceptor agonist guanfacine on innate and learned forms of behavior of dopamine transporter knockout (DAT-KO) rats to evaluate the possible noradrenergic modulation of behavioral deficits. DAT-KO and wild type rats were trained in the Hebb-Williams maze to perform spatial working memory tasks. Innate behavior was evaluated via pre pulse inhibition (PPI). Brain activity of the prefrontal cortex and the striatum was assessed. Repeated administration of GF improved the spatial working memory task fulfillment and PPI in DAT-KO rats, and led to specific changes in the power spectra and coherence of brain activity. Our data indicate that both repeated and acute treatment with a non-stimulant noradrenergic drug lead to improvements in the behavior of DAT-KO rats. This study further supports the role of the intricate balance of norepinephrine and dopamine in the regulation of attention. The observed compensatory effect of guanfacine on the behavior of hyperdopaminergic rats may be used in the development of combined treatments to support the dopamine-norepinephrine balance.

19.
Biomolecules ; 12(12)2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36551251

RESUMEN

Trace amine-associated receptors (TAAR1-TAAR9) are a family of G-protein-coupled monoaminergic receptors which might have great pharmacological potential. It has now been well established that TAAR1 plays an important role in the central nervous system. Interestingly, deletion of TAAR9 in rats leads to alterations in the periphery. Previously, we found that knockout of TAAR9 in rats (TAAR9-KO rats) decreased low-density lipoprotein cholesterol levels in the blood. TAAR9 was also identified in intestinal tissues, and it is known that it responds to polyamines. To elucidate the role of TAAR9 in the intestinal epithelium, we analyzed TAAR9-co-expressed gene clusters in public data for cecum samples. As identified by gene ontology enrichment analysis, in the intestine, TAAR9 is co-expressed with genes involved in intestinal mucosa homeostasis and function, including cell organization, differentiation, and death. Additionally, TAAR9 was co-expressed with genes implicated in dopamine signaling, which may suggest a role for this receptor in the regulation of peripheral dopaminergic transmission. To further investigate how TAAR9 might be involved in colonic mucosal homeostasis, we analyzed the fecal microbiome composition in TAAR9-KO rats and their wild-type littermates. We identified a significant difference in the number of observed taxa between the microbiome of TAAR9-KO and wild-type rats. In TAAR9-KO rats, the gut microbial community became more variable compared with the wild-type rats. Furthermore, it was found that the family Saccharimonadaceae, which is one of the top 10 most abundant families in TAAR9-KO rat feces, is almost completely absent in wild-type animal fecal samples. Taken together, these data indicate a role of TAAR9 in intestinal function.


Asunto(s)
Dopamina , Microbioma Gastrointestinal , Receptores Acoplados a Proteínas G , Animales , Ratas , Sistema Nervioso Central/metabolismo , Dopamina/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Técnicas de Inactivación de Genes , Heces/microbiología
20.
Biomedicines ; 10(12)2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36551763

RESUMEN

At least 50% of factors predisposing to alcohol dependence (AD) are genetic and women affected with this disorder present with more psychiatric comorbidities, probably indicating different genetic factors involved. We aimed to run a genome-wide association study (GWAS) followed by a bioinformatic functional annotation of associated genomic regions in patients with AD and eight related clinical measures. A genome-wide significant association of rs220677 with AD (p-value = 1.33 × 10-8 calculated with the Yates-corrected χ2 test under the assumption of dominant inheritance) was discovered in female patients. Associations of AD and related clinical measures with seven other single nucleotide polymorphisms listed in previous GWASs of psychiatric and addiction traits were differently replicated in male and female patients. The bioinformatic analysis showed that regulatory elements in the eight associated linkage disequilibrium blocks define the expression of 80 protein-coding genes. Nearly 68% of these and of 120 previously published coding genes associated with alcohol phenotypes directly interact in a single network, where BDNF is the most significant hub gene. This study indicates that several genes behind the pathogenesis of AD are different in male and female patients, but implicated molecular mechanisms are functionally connected. The study also reveals a central role of BDNF in the pathogenesis of AD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA