Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cortex ; 171: 165-177, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38000139

RESUMEN

Prior research has revealed distinctive patterns of impaired language abilities across the three variants of Primary Progressive Aphasia (PPA): nonfluent/agrammatic (nfvPPA), logopenic (lvPPA) and semantic (svPPA). However, little is known about whether, and to what extent, non-verbal cognitive abilities, such as processing speed, are impacted in PPA patients. This is because neuropsychological tests typically contain linguistic stimuli and require spoken output, being therefore sensitive to verbal deficits in aphasic patients. The aim of this study is to investigate potential differences in processing speed between PPA patients and healthy controls, and among the three PPA variants, using a brief non-verbal tablet-based task (Match) modeled after the WAIS-III digit symbol coding test, and to determine its neural correlates. Here, we compared performance on the Match task between PPA patients (n = 61) and healthy controls (n = 59) and across the three PPA variants. We correlated performance on Match with voxelwise gray and white matter volumes. We found that lvPPA and nfvPPA patients performed significantly worse on Match than healthy controls and svPPA patients. Worse performance on Match across PPA patients was associated with reduced gray matter volume in specific parts of the left middle frontal gyrus, superior parietal lobule, and precuneus, and reduced white matter volume in the left parietal lobe. To conclude, our behavioral findings reveal that processing speed is differentially impacted across the three PPA variants and provide support for the potential clinical utility of a tabled-based task (Match) to assess non-verbal cognition. In addition, our neuroimaging findings confirm the importance of a set of fronto-parietal regions that previous research has associated with processing speed and executive control. Finally, our behavioral and neuroimaging findings combined indicate that differences in processing speed are largely explained by the unequal distribution of atrophy in these fronto-parietal regions across the three PPA variants.


Asunto(s)
Afasia Progresiva Primaria , Humanos , Afasia Progresiva Primaria/diagnóstico por imagen , Afasia Progresiva Primaria/psicología , Velocidad de Procesamiento , Imagen por Resonancia Magnética/métodos , Sustancia Gris/diagnóstico por imagen , Corteza Cerebral
2.
Brain ; 147(2): 607-626, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-37769652

RESUMEN

The non-fluent/agrammatic variant of primary progressive aphasia (nfvPPA) is a neurodegenerative syndrome primarily defined by the presence of apraxia of speech (AoS) and/or expressive agrammatism. In addition, many patients exhibit dysarthria and/or receptive agrammatism. This leads to substantial phenotypic variation within the speech-language domain across individuals and time, in terms of both the specific combination of symptoms as well as their severity. How to resolve such phenotypic heterogeneity in nfvPPA is a matter of debate. 'Splitting' views propose separate clinical entities: 'primary progressive apraxia of speech' when AoS occurs in the absence of expressive agrammatism, 'progressive agrammatic aphasia' (PAA) in the opposite case, and 'AOS + PAA' when mixed motor speech and language symptoms are clearly present. While therapeutic interventions typically vary depending on the predominant symptom (e.g. AoS versus expressive agrammatism), the existence of behavioural, anatomical and pathological overlap across these phenotypes argues against drawing such clear-cut boundaries. In the current study, we contribute to this debate by mapping behaviour to brain in a large, prospective cohort of well characterized patients with nfvPPA (n = 104). We sought to advance scientific understanding of nfvPPA and the neural basis of speech-language by uncovering where in the brain the degree of MRI-based atrophy is associated with inter-patient variability in the presence and severity of AoS, dysarthria, expressive agrammatism or receptive agrammatism. Our cross-sectional examination of brain-behaviour relationships revealed three main observations. First, we found that the neural correlates of AoS and expressive agrammatism in nfvPPA lie side by side in the left posterior inferior frontal lobe, explaining their behavioural dissociation/association in previous reports. Second, we identified a 'left-right' and 'ventral-dorsal' neuroanatomical distinction between AoS versus dysarthria, highlighting (i) that dysarthria, but not AoS, is significantly influenced by tissue loss in right-hemisphere motor-speech regions; and (ii) that, within the left hemisphere, dysarthria and AoS map onto dorsally versus ventrally located motor-speech regions, respectively. Third, we confirmed that, within the large-scale grammar network, left frontal tissue loss is preferentially involved in expressive agrammatism and left temporal tissue loss in receptive agrammatism. Our findings thus contribute to define the function and location of the epicentres within the large-scale neural networks vulnerable to neurodegenerative changes in nfvPPA. We propose that nfvPPA be redefined as an umbrella term subsuming a spectrum of speech and/or language phenotypes that are closely linked by the underlying neuroanatomy and neuropathology.


Asunto(s)
Afasia Progresiva Primaria , Apraxias , Afasia Progresiva Primaria no Fluente , Humanos , Afasia de Broca/patología , Estudios Prospectivos , Disartria , Habla , Estudios Transversales , Apraxias/patología , Afasia Progresiva Primaria/patología , Afasia Progresiva Primaria no Fluente/complicaciones
3.
Commun Biol ; 6(1): 1161, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37957231

RESUMEN

Both classic and contemporary models of auditory word repetition involve at least four left hemisphere regions: primary auditory cortex for processing sounds; pSTS (within Wernicke's area) for processing auditory images of speech; pOp (within Broca's area) for processing motor images of speech; and primary motor cortex for overt speech articulation. Previous functional-MRI (fMRI) studies confirm that auditory repetition activates these regions, in addition to many others. Crucially, however, contemporary models do not specify how regions interact and drive each other during auditory repetition. Here, we used dynamic causal modelling, to test the functional interplay among the four core brain regions during single auditory word and pseudoword repetition. Our analysis is grounded in the principle of degeneracy-i.e., many-to-one structure-function relationships-where multiple neural pathways can execute the same function. Contrary to expectation, we found that, for both word and pseudoword repetition, (i) the effective connectivity between pSTS and pOp was predominantly bidirectional and inhibitory; (ii) activity in the motor cortex could be driven by either pSTS or pOp; and (iii) the latter varied both within and between individuals. These results suggest that different neural pathways can support auditory speech repetition. This degeneracy may explain resilience to functional loss after brain damage.


Asunto(s)
Corteza Motora , Habla , Humanos , Habla/fisiología , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Corteza Motora/diagnóstico por imagen , Corteza Motora/fisiología , Mapeo Encefálico , Modelos Neurológicos
4.
Hum Brain Mapp ; 44(11): 4390-4406, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37306089

RESUMEN

The logopenic variant of primary progressive aphasia (lvPPA) is a neurodegenerative syndrome characterized linguistically by gradual loss of repetition and naming skills resulting from left posterior temporal and inferior parietal atrophy. Here, we sought to identify which specific cortical loci are initially targeted by the disease (epicenters) and investigate whether atrophy spreads through predetermined networks. First, we used cross-sectional structural MRI data from individuals with lvPPA to define putative disease epicenters using a surface-based approach paired with an anatomically fine-grained parcellation of the cortical surface (i.e., HCP-MMP1.0 atlas). Second, we combined cross-sectional functional MRI data from healthy controls and longitudinal structural MRI data from individuals with lvPPA to derive the epicenter-seeded resting-state networks most relevant to lvPPA symptomatology and ascertain whether functional connectivity in these networks predicts longitudinal atrophy spread in lvPPA. Our results show that two partially distinct brain networks anchored to the left anterior angular and posterior superior temporal gyri epicenters were preferentially associated with sentence repetition and naming skills in lvPPA. Critically, the strength of connectivity within these two networks in the neurologically-intact brain significantly predicted longitudinal atrophy progression in lvPPA. Taken together, our findings indicate that atrophy progression in lvPPA, starting from inferior parietal and temporoparietal junction regions, predominantly follows at least two partially nonoverlapping pathways, which may influence the heterogeneity in clinical presentation and prognosis.


Asunto(s)
Enfermedad de Alzheimer , Afasia Progresiva Primaria , Humanos , Afasia Progresiva Primaria/diagnóstico por imagen , Estudios Transversales , Pruebas Neuropsicológicas , Encéfalo , Atrofia/patología , Enfermedad de Alzheimer/patología
5.
medRxiv ; 2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37292690

RESUMEN

The logopenic variant of primary progressive aphasia (lvPPA) is a neurodegenerative syndrome characterized linguistically by gradual loss of repetition and naming skills, resulting from left posterior temporal and inferior parietal atrophy. Here, we sought to identify which specific cortical loci are initially targeted by the disease (epicenters) and investigate whether atrophy spreads through pre-determined networks. First, we used cross-sectional structural MRI data from individuals with lvPPA to define putative disease epicenters using a surface-based approach paired with an anatomically-fine-grained parcellation of the cortical surface (i.e., HCP-MMP1.0 atlas). Second, we combined cross-sectional functional MRI data from healthy controls and longitudinal structural MRI data from individuals with lvPPA to derive the epicenter-seeded resting-state networks most relevant to lvPPA symptomatology and ascertain whether functional connectivity in these networks predicts longitudinal atrophy spread in lvPPA. Our results show that two partially distinct brain networks anchored to the left anterior angular and posterior superior temporal gyri epicenters were preferentially associated with sentence repetition and naming skills in lvPPA. Critically, the strength of connectivity within these two networks in the neurologically-intact brain significantly predicted longitudinal atrophy progression in lvPPA. Taken together, our findings indicate that atrophy progression in lvPPA, starting from inferior parietal and temporo-parietal junction regions, predominantly follows at least two partially non-overlapping pathways, which may influence the heterogeneity in clinical presentation and prognosis.

6.
Cereb Cortex ; 33(7): 3437-3453, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-35965059

RESUMEN

Functional imaging studies of neurotypical adults report activation in the left putamen during speech production. The current study asked how stroke survivors with left putamen damage are able to produce correct spoken responses during a range of speech production tasks. Using functional magnetic resonance imaging, activation during correct speech production responses was assessed in 5 stroke patients with circumscribed left dorsal striatal lesions, 66 stroke patient controls who did not have focal left dorsal striatal lesions, and 54 neurotypical adults. As a group, patients with left dorsal striatal damage (our patients of interest) showed higher activation than neurotypical controls in the left superior parietal cortex during successful speech production. This effect was not specific to patients with left dorsal striatal lesions as we observed enhanced activation in the same region in some patient controls and also in more error-prone neurotypical participants. Our results strongly suggest that enhanced left superior parietal activation supports speech production in diverse challenging circumstances, including those caused by stroke damage. They add to a growing body of literature indicating how upregulation within undamaged parts of the neural systems already recruited by neurotypical adults contributes to recovery after stroke.


Asunto(s)
Habla , Accidente Cerebrovascular , Adulto , Humanos , Habla/fisiología , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/patología , Imagen por Resonancia Magnética , Lóbulo Parietal , Putamen
7.
Neuropsychol Rehabil ; 32(9): 2319-2341, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34210238

RESUMEN

Establishing whether speech and language therapy after stroke has beneficial effects on speaking ability is challenging because of the need to control for multiple non-therapy factors known to influence recovery. We investigated how speaking ability at three time points post-stroke differed in patients who received varying amounts of clinical therapy in the first month post-stroke. In contrast to prior studies, we factored out variance from: initial severity of speaking impairment, amount of later therapy, and left and right hemisphere lesion size and site. We found that speaking ability at one month post-stroke was significantly better in patients who received early therapy (n = 79), versus those who did not (n = 64), and the number of hours of early therapy was positively related to recovery at one year post-stroke. We offer two non-mutually exclusive interpretations of these data: (1) patients may benefit from the early provision of self-management strategies; (2) therapy is more likely to be provided to patients who have a better chance of recovery (e.g., poor physical and/or mental health may impact suitability for therapy and chance of recovery). Both interpretations have implications for future studies aiming to predict individual patients' speech outcomes after stroke, and their response to therapy.


Asunto(s)
Afasia , Accidente Cerebrovascular , Humanos , Afasia/etiología , Terapia del Lenguaje , Habla , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/terapia , Logopedia , Sobrevivientes
8.
Neuroimage ; 245: 118764, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34848301

RESUMEN

Prior studies have shown that the left posterior superior temporal sulcus (pSTS) and left temporo-parietal junction (TPJ) both contribute to phonological short-term memory, speech perception and speech production. Here, by conducting a within-subjects multi-factorial fMRI study, we dissociate the response profiles of these regions and a third region - the anterior ascending terminal branch of the left superior temporal sulcus (atSTS), which lies dorsal to pSTS and ventral to TPJ. First, we show that each region was more activated by (i) 1-back matching on visually presented verbal stimuli (words or pseudowords) compared to 1-back matching on visually presented non-verbal stimuli (pictures of objects or non-objects), and (ii) overt speech production than 1-back matching, across 8 types of stimuli (visually presented words, pseudowords, objects and non-objects and aurally presented words, pseudowords, object sounds and meaningless hums). The response properties of the three regions dissociated within the auditory modality. In left TPJ, activation was higher for auditory stimuli that were non-verbal (sounds of objects or meaningless hums) compared to verbal (words and pseudowords), irrespective of task (speech production or 1-back matching). In left pSTS, activation was higher for non-semantic stimuli (pseudowords and hums) than semantic stimuli (words and object sounds) on the dorsal pSTS surface (dpSTS), irrespective of task. In left atSTS, activation was not sensitive to either semantic or verbal content. The contrasting response properties of left TPJ, dpSTS and atSTS was cross-validated in an independent sample of 59 participants, using region-by-condition interactions. We also show that each region participates in non-overlapping networks of frontal, parietal and cerebellar regions. Our results challenge previous claims about functional specialisation in the left posterior superior temporal lobe and motivate future studies to determine the timing and directionality of information flow in the brain networks involved in speech perception and production.


Asunto(s)
Mapeo Encefálico , Cerebelo/fisiología , Corteza Cerebral/fisiología , Red Nerviosa/fisiología , Psicolingüística , Percepción del Habla/fisiología , Habla/fisiología , Lóbulo Temporal/fisiología , Adulto , Cerebelo/diagnóstico por imagen , Corteza Cerebral/diagnóstico por imagen , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Red Nerviosa/diagnóstico por imagen , Lectura , Lóbulo Temporal/diagnóstico por imagen , Adulto Joven
9.
Neuroimage ; 245: 118734, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34793955

RESUMEN

Controversy surrounds the interpretation of higher activation for pseudoword compared to word reading in the left precentral gyrus and pars opercularis. Specifically, does activation in these regions reflect: (1) the demands on sublexical assembly of articulatory codes, or (2) retrieval effort because the combinations of articulatory codes are unfamiliar? Using fMRI, in 84 neurologically intact participants, we addressed this issue by comparing reading and repetition of words (W) and pseudowords (P) to naming objects (O) from pictures or sounds. As objects do not provide sublexical articulatory cues, we hypothesis that retrieval effort will be greater for object naming than word repetition/reading (which benefits from both lexical and sublexical cues); while the demands on sublexical assembly will be higher for pseudoword production than object naming. We found that activation was: (i) highest for pseudoword reading [P>O&W in the visual modality] in the anterior part of the ventral precentral gyrus bordering the precentral sulcus (vPCg/vPCs), consistent with the sublexical assembly of articulatory codes; but (ii) as high for object naming as pseudoword production [P&O>W] in dorsal precentral gyrus (dPCg) and the left inferior frontal junction (IFJ), consistent with retrieval demands and cognitive control. In addition, we dissociate the response properties of vPCg/vPCs, dPCg and IFJ from other left frontal lobe regions that are activated during single word speech production. Specifically, in both auditory and visual modalities: a central part of vPCg (head and face area) was more activated for verbal than nonverbal stimuli [P&W>O]; and the pars orbitalis and inferior frontal sulcus were most activated during object naming [O>W&P]. Our findings help to resolve a previous discrepancy in the literature, dissociate three functionally distinct parts of the precentral gyrus, and refine our knowledge of the functional anatomy of speech production in the left frontal lobe.


Asunto(s)
Mapeo Encefálico/métodos , Lóbulo Frontal/diagnóstico por imagen , Lóbulo Frontal/fisiología , Imagen por Resonancia Magnética , Reconocimiento Visual de Modelos/fisiología , Medición de la Producción del Habla , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Lectura
10.
Brain Commun ; 3(4): fcab230, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34671727

RESUMEN

Broca's area in the posterior half of the left inferior frontal gyrus has traditionally been considered an important node in the speech production network. Nevertheless, recovery of speech production has been reported, to different degrees, within a few months of damage to Broca's area. Importantly, contemporary evidence suggests that, within Broca's area, its posterior part (i.e. pars opercularis) plays a more prominent role in speech production than its anterior part (i.e. pars triangularis). In this study, we therefore investigated the brain activation patterns that underlie accurate speech production following stroke damage to the opercular part of Broca's area. By combining functional MRI and 13 tasks that place varying demands on speech production, brain activation was compared in (i) seven patients of interest with damage to the opercular part of Broca's area; (ii) 55 neurologically intact controls; and (iii) 28 patient controls with left-hemisphere damage that spared Broca's area. When producing accurate overt speech responses, the patients with damage to the left pars opercularis activated a substantial portion of the normal bilaterally distributed system. Within this system, there was a lesion-site-dependent effect in a specific part of the right cerebellar Crus I where activation was significantly higher in the patients with damage to the left pars opercularis compared to both neurologically intact and patient controls. In addition, activation in the right pars opercularis was significantly higher in the patients with damage to the left pars opercularis relative to neurologically intact controls but not patient controls (after adjusting for differences in lesion size). By further examining how right Crus I and right pars opercularis responded across a range of conditions in the neurologically intact controls, we suggest that these regions play distinct roles in domain-general cognitive control. Finally, we show that enhanced activation in the right pars opercularis cannot be explained by release from an inhibitory relationship with the left pars opercularis (i.e. dis-inhibition) because right pars opercularis activation was positively related to left pars opercularis activation in neurologically intact controls. Our findings motivate and guide future studies to investigate (i) how exactly right Crus I and right pars opercularis support accurate speech production after damage to the opercular part of Broca's area and (ii) whether non-invasive neurostimulation to one or both of these regions boosts speech production recovery after damage to the opercular part of Broca's area.

11.
Neuroimage Clin ; 32: 102820, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34653836

RESUMEN

Specific regions of the cerebellum are activated when neurologically intact adults speak, and cerebellar damage can impair speech production early after stroke, but how the brain supports accurate speech production years after cerebellar damage remains unknown. We investigated this in patients with cerebellar lesions affecting regions that are normally recruited during speech production. Functional MRI activation in these patients, measured during various single word production tasks, was compared to that of neurologically intact controls, and patient controls with lesions that spared the cerebellar speech production regions. Our analyses revealed that, during a range of speech production tasks, patients with damage to cerebellar speech production regions had greater activation in the right dorsal premotor cortex (r-PMd) and right supplementary motor area (r-SMA) compared to neurologically intact controls. The loci of increased activation in cerebral motor speech areas motivate future studies to delineate the functional contributions of different parts of the speech production network, and test whether non-invasive stimulation to r-PMd and r-SMA facilitates speech recovery after cerebellar stroke.


Asunto(s)
Corteza Motora , Adulto , Mapeo Encefálico , Cerebelo/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Habla
14.
Brain Commun ; 3(2): fcab031, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33928246

RESUMEN

Prior studies have reported inconsistency in the lesion sites associated with verbal short-term memory impairments. Here we asked: How many different lesion sites can account for selective impairments in verbal short-term memory that persist over time, and how consistently do these lesion sites impair verbal short-term memory? We assessed verbal short-term memory impairments using a forward digit span task from the Comprehensive Aphasia Test. First, we identified the incidence of digit span impairments in a sample of 816 stroke survivors (541 males/275 females; age at stroke onset 56 ± 13 years; time post-stroke 4.4 ± 5.2 years). Second, we studied the lesion sites in a subgroup of these patients (n = 39) with left hemisphere damage and selective digit span impairment-defined as impaired digit span with unimpaired spoken picture naming and spoken word comprehension (tests of speech production and speech perception, respectively). Third, we examined how often these lesion sites were observed in patients who either had no digit span impairments or digit span impairments that co-occurred with difficulties in speech perception and/or production tasks. Digit span impairments were observed in 222/816 patients. Almost all (199/222 = 90%) had left hemisphere damage to five small regions in basal ganglia and/or temporo-parietal areas. Even complete damage to one or more of these five regions was not consistently associated with persistent digit span impairment. However, when the same regions were spared, only 5% (23/455) presented with digit span impairments. These data suggest that verbal short-term memory impairments are most consistently associated with damage to left temporo-parietal and basal ganglia structures. Sparing of these regions very rarely results in persistently poor verbal short-term memory. These findings have clinical implications for predicting recovery of verbal short-term memory after stroke.

15.
Brain ; 144(3): 817-832, 2021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33517378

RESUMEN

Broca's area in the posterior half of the left inferior frontal gyrus has long been thought to be critical for speech production. The current view is that long-term speech production outcome in patients with Broca's area damage is best explained by the combination of damage to Broca's area and neighbouring regions including the underlying white matter, which was also damaged in Paul Broca's two historic cases. Here, we dissociate the effect of damage to Broca's area from the effect of damage to surrounding areas by studying long-term speech production outcome in 134 stroke survivors with relatively circumscribed left frontal lobe lesions that spared posterior speech production areas in lateral inferior parietal and superior temporal association cortices. Collectively, these patients had varying degrees of damage to one or more of nine atlas-based grey or white matter regions: Brodmann areas 44 and 45 (together known as Broca's area), ventral premotor cortex, primary motor cortex, insula, putamen, the anterior segment of the arcuate fasciculus, uncinate fasciculus and frontal aslant tract. Spoken picture description scores from the Comprehensive Aphasia Test were used as the outcome measure. Multiple regression analyses allowed us to tease apart the contribution of other variables influencing speech production abilities such as total lesion volume and time post-stroke. We found that, in our sample of patients with left frontal damage, long-term speech production impairments (lasting beyond 3 months post-stroke) were solely predicted by the degree of damage to white matter, directly above the insula, in the vicinity of the anterior part of the arcuate fasciculus, with no contribution from the degree of damage to Broca's area (as confirmed with Bayesian statistics). The effect of white matter damage cannot be explained by a disconnection of Broca's area, because speech production scores were worse after damage to the anterior arcuate fasciculus with relative sparing of Broca's area than after damage to Broca's area with relative sparing of the anterior arcuate fasciculus. Our findings provide evidence for three novel conclusions: (i) Broca's area damage does not contribute to long-term speech production outcome after left frontal lobe strokes; (ii) persistent speech production impairments after damage to the anterior arcuate fasciculus cannot be explained by a disconnection of Broca's area; and (iii) the prior association between persistent speech production impairments and Broca's area damage can be explained by co-occurring white matter damage, above the insula, in the vicinity of the anterior part of the arcuate fasciculus.


Asunto(s)
Afasia de Broca/patología , Área de Broca/patología , Lóbulo Frontal/patología , Accidente Cerebrovascular/patología , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Accidente Cerebrovascular/complicaciones
16.
Brain Commun ; 2(2): fcaa164, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33376985

RESUMEN

Paradoxical lesions are secondary brain lesions that ameliorate functional deficits caused by the initial insult. This effect has been explained in several ways; particularly by the reduction of functional inhibition, or by increases in the excitatory-to-inhibitory synaptic balance within perilesional tissue. In this article, we simulate how and when a modification of the excitatory-inhibitory balance triggers the reversal of a functional deficit caused by a primary lesion. For this, we introduce in-silico lesions to an active inference model of auditory word repetition. The first in-silico lesion simulated damage to the extrinsic (between regions) connectivity causing a functional deficit that did not fully resolve over 100 trials of a word repetition task. The second lesion was implemented in the intrinsic (within region) connectivity, compromising the model's ability to rebalance excitatory-inhibitory connections during learning. We found that when the second lesion was mild, there was an increase in experience-dependent plasticity that enhanced performance relative to a single lesion. This paradoxical lesion effect disappeared when the second lesion was more severe because plasticity-related changes were disproportionately amplified in the intrinsic connectivity, relative to lesioned extrinsic connections. Finally, this framework was used to predict the physiological correlates of paradoxical lesions. This formal approach provides new insights into the computational and neurophysiological mechanisms that allow some patients to recover after large or multiple lesions.

17.
Neuroimage Clin ; 24: 102005, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31670072

RESUMEN

Around a third of stroke survivors suffer from acquired language disorders (aphasia), but current medicine cannot predict whether or when they might recover. Prognostic research in this area increasingly draws on datasets associating structural brain imaging data with outcome scores for ever-larger samples of stroke patients. The aim is to learn brain-behaviour trends from these data, and generalize those trends to predict outcomes for new patients. The practical significance of this work depends on the expected breadth of that generalization. Here, we show that these models can generalize across countries and native languages (from British patients tested in English to Chilean patients tested in Spanish), across neuroimaging technology (from MRI to CT), and from scans collected months or years after stroke for research purposes, to scans collected days or weeks after stroke for clinical purposes. Our results suggest one important confound, in attempting to generalize from research data to clinical data, is the delay between scan acquisition and language assessment. This delay is typically small for research data, where scans and assessments are often acquired contemporaneously. But the most natural, clinical application of these predictions will employ acute prognostic factors to predict much longer-term outcomes. We mitigated this confound by projecting the clinical patients' lesions from the time when their scans were acquired, to the time when their language abilities were assessed; with this projection in place, there was strong evidence that prognoses derived from research data generalized equally well to research and clinical data. These results encourage attention to the confounding role that lesion growth may play in other types of lesion-symptom analysis.


Asunto(s)
Afasia/diagnóstico , Modelos Neurológicos , Neuroimagen , Plasticidad Neuronal , Accidente Cerebrovascular/diagnóstico , Adulto , Anciano , Anciano de 80 o más Años , Afasia/etiología , Afasia/patología , Afasia/fisiopatología , Chile , Conjuntos de Datos como Asunto , Femenino , Humanos , Pruebas del Lenguaje , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Plasticidad Neuronal/fisiología , Pronóstico , Reproducibilidad de los Resultados , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/patología , Accidente Cerebrovascular/fisiopatología , Factores de Tiempo , Tomografía Computarizada por Rayos X , Reino Unido
18.
Brain ; 141(12): 3389-3404, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30418586

RESUMEN

Acquired language disorders after stroke are strongly associated with left hemisphere damage. When language difficulties are observed in the context of right hemisphere strokes, patients are usually considered to have atypical functional anatomy. By systematically integrating behavioural and lesion data from brain damaged patients with functional MRI data from neurologically normal participants, we investigated when and why right hemisphere strokes cause language disorders. Experiment 1 studied right-handed patients with unilateral strokes that damaged the right (n = 109) or left (n = 369) hemispheres. The most frequently impaired language task was: auditory sentence-to-picture matching after right hemisphere strokes; and spoken picture description after left hemisphere strokes. For those with auditory sentence-to-picture matching impairments after right hemisphere strokes, the majority (n = 9) had normal performance on tests of perceptual (visual or auditory) and linguistic (semantic, phonological or syntactic) processing. Experiment 2 found that these nine patients had significantly more damage to dorsal parts of the superior longitudinal fasciculus and the right inferior frontal sulcus compared to 75 other patients who also had right hemisphere strokes but were not impaired on the auditory sentence-to-picture matching task. Damage to these right hemisphere regions caused long-term speech comprehension difficulties in 67% of patients. Experiments 3 and 4 used functional MRI in two groups of 25 neurologically normal individuals to show that within the regions identified by Experiment 2, the right inferior frontal sulcus was normally activated by (i) auditory sentence-to-picture matching; and (ii) one-back matching when the demands on linguistic and non-linguistic working memory were high. Together, these experiments demonstrate that the right inferior frontal cortex contributes to linguistic and non-linguistic working memory capacity (executive function) that is needed for normal speech comprehension. Our results link previously unrelated literatures on the role of the right inferior frontal cortex in executive processing and the role of executive processing in sentence comprehension; which in turn helps to explain why right inferior frontal activity has previously been reported to increase during recovery of language function after left hemisphere stroke. The clinical relevance of our findings is that the detrimental effect of right hemisphere strokes on language is (i) much greater than expected; (ii) frequently observed after damage to the right inferior frontal sulcus; (iii) task dependent; (iv) different to the type of impairments observed after left hemisphere strokes; and (v) can result in long-lasting deficits that are (vi) not the consequence of atypical language lateralization.


Asunto(s)
Comprensión , Lóbulo Frontal/patología , Trastornos del Lenguaje/patología , Trastornos del Lenguaje/psicología , Percepción del Habla , Accidente Cerebrovascular/complicaciones , Femenino , Lateralidad Funcional , Humanos , Trastornos del Lenguaje/etiología , Lingüística , Masculino , Memoria a Corto Plazo , Persona de Mediana Edad
19.
Neuropsychologia ; 115: 101-111, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29550526

RESUMEN

This study investigated how sample size affects the reproducibility of findings from univariate voxel-based lesion-deficit analyses (e.g., voxel-based lesion-symptom mapping and voxel-based morphometry). Our effect of interest was the strength of the mapping between brain damage and speech articulation difficulties, as measured in terms of the proportion of variance explained. First, we identified a region of interest by searching on a voxel-by-voxel basis for brain areas where greater lesion load was associated with poorer speech articulation using a large sample of 360 right-handed English-speaking stroke survivors. We then randomly drew thousands of bootstrap samples from this data set that included either 30, 60, 90, 120, 180, or 360 patients. For each resample, we recorded effect size estimates and p values after conducting exactly the same lesion-deficit analysis within the previously identified region of interest and holding all procedures constant. The results show (1) how often small effect sizes in a heterogeneous population fail to be detected; (2) how effect size and its statistical significance varies with sample size; (3) how low-powered studies (due to small sample sizes) can greatly over-estimate as well as under-estimate effect sizes; and (4) how large sample sizes (N ≥ 90) can yield highly significant p values even when effect sizes are so small that they become trivial in practical terms. The implications of these findings for interpreting the results from univariate voxel-based lesion-deficit analyses are discussed.


Asunto(s)
Mapeo Encefálico , Encéfalo/patología , Tamaño de la Muestra , Accidente Cerebrovascular/patología , Accidente Cerebrovascular/fisiopatología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Encéfalo/diagnóstico por imagen , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Reconocimiento en Psicología/fisiología , Análisis de Regresión , Reproducibilidad de los Resultados , Accidente Cerebrovascular/diagnóstico por imagen , Adulto Joven
20.
Neuropsychologia ; 115: 124-133, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29477839

RESUMEN

In this study, we hypothesized that if the same deficit can be caused by damage to one or another part of a distributed neural system, then voxel-based analyses might miss critical lesion sites because preservation of each site will not be consistently associated with preserved function. The first part of our investigation used voxel-based multiple regression analyses of data from 359 right-handed stroke survivors to identify brain regions where lesion load is associated with picture naming abilities after factoring out variance related to object recognition, semantics and speech articulation so as to focus on deficits arising at the word retrieval level. A highly significant lesion-deficit relationship was identified in left temporal and frontal/premotor regions. Post-hoc analyses showed that damage to either of these sites caused the deficit of interest in less than half the affected patients (76/162 = 47%). After excluding all patients with damage to one or both of the identified regions, our second analysis revealed a new region, in the anterior part of the left putamen, which had not been previously detected because many patients had the deficit of interest after temporal or frontal damage that preserved the left putamen. The results illustrate how (i) false negative results arise when the same deficit can be caused by different lesion sites; (ii) some of the missed effects can be unveiled by adopting an iterative approach that systematically excludes patients with lesions to the areas identified in previous analyses, (iii) statistically significant voxel-based lesion-deficit mappings can be driven by a subset of patients; (iv) focal lesions to the identified regions are needed to determine whether the deficit of interest is the consequence of focal damage or much more extensive damage that includes the identified region; and, finally, (v) univariate voxel-based lesion-deficit mappings cannot, in isolation, be used to predict outcome in other patients.


Asunto(s)
Mapeo Encefálico , Encéfalo/patología , Trastornos del Lenguaje/etiología , Accidente Cerebrovascular/patología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Comprensión , Femenino , Lateralidad Funcional/fisiología , Humanos , Procesamiento de Imagen Asistido por Computador , Trastornos del Lenguaje/diagnóstico por imagen , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas , Accidente Cerebrovascular/complicaciones , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA