Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Colloids Surf B Biointerfaces ; 245: 114285, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39366109

RESUMEN

Glioblastoma is one of the most recurring types of glioma, having the highest mortality rate among all other gliomas. Traditionally, the standard course of treatment for glioblastoma involved maximum surgical resection, followed by chemotherapy and radiation therapy. Nanocarriers have recently focused on enhancing the chemotherapeutic administration to the brain to satisfy unmet therapeutic requirements for treating brain-related disorders. Due to the significant drawbacks and high recurrence rates of gliomas, intranasal administration of nanocarrier systems presents several advantages. These include low toxicity, non-invasiveness, and the ability to cross the blood-brain barrier. By customizing their size, encasing them with mucoadhesive agents, or undergoing surface modification that encourages movement over the nose's mucosa, we can exceptionally engineer nanocarriers for intranasal administration. Olfactory and trigeminal nerves absorb drugs administered nasally and transport them to the brain, serving as the primary delivery mechanism for nose-to-brain administration. This review sums up the latest developments in chemotherapeutic nanocarriers, such as metallic nanoparticles, polymeric nanoparticles, nanogels, nano vesicular carriers, genetic material-based nanocarriers, and polymeric micelles. These nanocarriers have demonstrated efficient drug delivery from the nose to the brain, effectively overcoming mucociliary clearance. However, challenges persist, such as limitations in targeted chemotherapy and restricted drug loading capacity for intranasal administration. Additionally, the review addresses regulatory considerations and prospects for these innovative drug delivery systems.

2.
Mol Cancer ; 22(1): 160, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37784179

RESUMEN

Lipid-based polymeric nanoparticles are the highly popular carrier systems for cancer drug therapy. But presently, detailed investigations have revealed their flaws as drug delivery carriers. Lipid polymer hybrid nanoparticles (LPHNPs) are advanced core-shell nanoconstructs with a polymeric core region enclosed by a lipidic layer, presumed to be derived from both liposomes and polymeric nanounits. This unique concept is of utmost importance as a combinable drug delivery platform in oncology due to its dual structured character. To add advantage and restrict one's limitation by other, LPHNPs have been designed so to gain number of advantages such as stability, high loading of cargo, increased biocompatibility, rate-limiting controlled release, and elevated drug half-lives as well as therapeutic effectiveness while minimizing their drawbacks. The outer shell, in particular, can be functionalized in a variety of ways with stimuli-responsive moieties and ligands to provide intelligent holding and for active targeting of antineoplastic medicines, transport of genes, and theragnostic. This review comprehensively provides insight into recent substantial advancements in developing strategies for treating various cancer using LPHNPs. The bioactivity assessment factors have also been highlighted with a discussion of LPHNPs future clinical prospects.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , Liposomas/uso terapéutico , Polímeros/uso terapéutico , Sistemas de Liberación de Medicamentos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Portadores de Fármacos , Lípidos/uso terapéutico
3.
Biomater Res ; 27(1): 42, 2023 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-37149607

RESUMEN

The non-specificity of standard anticancer therapies has profound detrimental consequences in clinical treatment. Therapeutic specificity can be precisely achieved using cutting-edge ligands. Small synthetic oligonucleotide-ligands chosen through Systematic evolution of ligands by exponential enrichment (SELEX) would be an unceasing innovation in using nucleic acids as aptamers, frequently referred to as "chemical antibodies." Aptamers act as externally controlled switching materials that can attach to various substrates, for example, membrane proteins or nucleic acid structures. Aptamers pose excellent specificity and affinity for target molecules and can be used as medicines to suppress tumor cell growth directly. The creation of aptamer-conjugated nanoconstructs has recently opened up innovative options in cancer therapy that are more effective and target tumor cells with minor toxicity to healthy tissues. This review focuses on a comprehensive description of the most capable classes of aptamer-tethered nanocarriers for precise recognition of cancer cells with significant development in proficiency, selectivity, and targetability for cancer therapy. Existing theranostic applications with the problems and future directions are also highlighted.

4.
Int J Pharm ; 637: 122894, 2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-36990168

RESUMEN

The therapeutics available for cancer treatment have the major hurdle of site-specific delivery of anti-cancer drugs to the tumor site and non-target specific side effects. The standard therapy for ovarian cancer still poses numerous pitfalls due to the irrational use of drugs affecting healthy cells. As an appealing approach, nanomedicine could revamp the therapeutic profile of anti-cancer agents. Owing to the low manufacturing cost, increased biocompatibility, and modifiable surface properties, lipid-based nanocarriers, particularly solid lipid nanoparticles (SLN), have remarkable drug delivery properties in cancer treatment. Given the extra-ordinary benefits, we developed anti-neoplastic (paclitaxel) drug-loaded SLN (PTX-SLN) and functionalized with N-acetyl-d-glucosamine (GLcNAc) (GLcNAc-PTX-SLN) to reduce the rate of proliferation, growth, and metastasis of ovarian cancer cells over-expressing GLUT1 transporters. The particles presented considerable size and distribution while demonstrating haemocompatibility. Using GLcNAc modified form of SLNs, confocal microscopy, MTT assay, and flow cytometry study demonstrated higher cellular uptake and significant cytotoxic effect. Also, molecular docking results established excellent binding affinity between GLcNAc and GLUT1, complimenting the feasibility of the therapeutic approach in targeted cancer therapy. Following the compendium of target-specific drug delivery by SLN, our results demonstrated a significant response for ovarian cancer therapy.


Asunto(s)
Antineoplásicos , Nanopartículas , Neoplasias Ováricas , Humanos , Femenino , Portadores de Fármacos/química , Transportador de Glucosa de Tipo 1 , Simulación del Acoplamiento Molecular , Línea Celular Tumoral , Paclitaxel , Neoplasias Ováricas/tratamiento farmacológico , Nanopartículas/química , Proteínas de Transporte de Membrana
5.
Curr Drug Deliv ; 20(7): 961-977, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35578875

RESUMEN

INTRODUCTION: The goal of this study was to see if ascorbic acid grafted polylactic glycolic acid-b-polyethylene glycol nanoparticles (PLGA-b-PEG NPs) might boost the carrying or transport capacity of rivastigmine(RSM) to the brain via choroid plexus Sodium-dependent vitamin C transporter 2 (SVCT2 transporters). The IR and 1H NMR, were used to characterise the PLGA-b-PEG copolymer. METHODS: Nanoprecipitation method was used to make PLGA-b-PEG NPs. To promote SVCT2- mediated transportation of ascorbic acid (Asc) into the brain, PLGA-b-PEG NPs of acceptable size, polydispersity, and drug loading were bound with ascorbic acid (PLGA-b-PEG-Asc). When compared to PLGA-b-mPEG NPs, the surface functionalization of NPs with ascorbic acid dramatically improved the cellular uptake of NPs in SVCT2 expressing NIH/3T3 cells. Radial Arm Maze Test, and Acetylcholinesterase (AChE) activity in scopolamine-induced amnetic rats were used to assess in vivo pharmacodynamic effectiveness. RESULTS: In vivo pharmacodynamic tests revealed that drug loaded PLGA-b-PEG-Asc NPs had much greater therapeutic and sustained activity than free drugs, and PLGA-b-mPEG NPs to the brain. CONCLUSION: As a consequence, the findings revealed that using ascorbic acid grafted PLGA-b-PEG NPs to deliver bioactives to the brain is a potential strategy.


Asunto(s)
Portadores de Fármacos , Nanopartículas , Ratones , Ratas , Animales , Rivastigmina/metabolismo , Portadores de Fármacos/química , Ácido Ascórbico , Acetilcolinesterasa/metabolismo , Polietilenglicoles/química , Poliglactina 910/química , Encéfalo/metabolismo , Nanopartículas/química , Tamaño de la Partícula
6.
Colloids Surf B Biointerfaces ; 203: 111760, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33872827

RESUMEN

The present study was designed to develop pH-sensitive lipid polymer hybrid nanoparticles (pHS-LPHNPs) for specific cytosolic-delivery of docetaxel (DTX). The pHS-LPHNPs-DTX formulation was prepared by self-assembled nano-precipitation technique and characterized for zeta potential, particle size, entrapment efficiency, polydispersity index (PDI), and in vitro drug release. In vitro cytotoxicity of pHS-LPHNPs-DTX was assessed on breast cancer cells (MDA-MB-231 and MCF-7) and compared with DTX-loaded conventional LPHNPs and bare DTX. In vitro cellular uptake in MDA-MB-231 cell lines showed better uptake of pHS-LPHNPs. Further, a significant reduction in the IC50 of pHS-LPHNPs-DTX against both breast cancer cells was observed. Flow cytometry results showed greater apoptosis in case of pHS-LPHNPs-DTX treated MDA-MB-231 cells. Breast cancer was experimentally induced in BALB/c female mice, and the in vivo efficacy of the developed pHS-LPHNPs formulation was assessed with respect to the pharmacokinetics, biodistribution in the vital organs (liver, kidney, heart, lungs, and spleen), percentage tumor burden, and survival of breast cancer-bearing animals. In vivo studies showed improved pharmacokinetic and target-specificity with minimum DTX circulation in the deep-seated organs in the case of pHS-LPHNPs-DTX compared to the LPHNPs-DTX and free DTX. Mice treated with pHS-LPHNPs-DTX exhibited a significantly lesser tumor burden than other treatment groups. Also, reduced distribution of DTX in the serum was evident for pHS-LPHNPs-DTX treated mice compared to the LPHNPs-DTX and free DTX. In essence, pHS-LPHNPs mediated delivery of DTX presents a viable platform for developing therapeutic-interventions against breast-cancer.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Nanopartículas , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Docetaxel/farmacología , Portadores de Fármacos/uso terapéutico , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Tamaño de la Partícula , Distribución Tisular
7.
Curr Drug Deliv ; 18(8): 1056-1063, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33475059

RESUMEN

The cell's power house, mitochondrion, is a vital organelle for drug targeting in the treatment of many diseases due to its fundamental duties and function related to cell proliferation and death. The mitochondrial membrane comprises bilayer artifact and poses extremely negative potential, creating hurdles for therapeutic molecules in reaching mitochondria. To accomplish mitochondrial targeting, the scientific community has explored diverse pharmaceutical formulations like liposomes, polymeric nanoparticles (NPs), and inorganic NPs. However, the game changing technology was a modification of these carriers by mitochondriotropic moiety, dequalinium chloride (DQA) or delivering the chemotherapeutics by DQAsomes. The DQA represents a distinctive mitochondriotropic delocalized cation that displays their selectivity towards accumulation in mitochondria of carcinoma cells. Attributed to this characteristics, DQAsomes have been formulated using DQA and explored for successful mitochondrial targeting of bioactives. In this review, it is discussed the effectiveness of DQA nanocarriers which efficiently and selectively transmit the cytotoxic drug to the tumor cell. The DQA based nanoformulations have evidently displayed augmented pharmacological and therapeutic outcomes than their counterparts both in vitro and in vivo. Thus, DQAsomes symbolizes an ideal carrier with excellent potential as mitochondrial targeting agent.


Asunto(s)
Decualinio , Nanopartículas , Sistemas de Liberación de Medicamentos , Liposomas , Mitocondrias
8.
Int J Pharm ; 588: 119781, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32822781

RESUMEN

Polyurethanes (PUs) constitute an essential class of stimuli-responsive and biodegradable material, which has significantly contributed to the advancement of polymers utilization in the biomedical field. The bio-erodible PUs construct an active corridor for facilitating drug into tumor cells, which has significantly impacted the progression of nano-micellar delivery systems. The self-assembledcolloidal PUs pose distinctive features such as enhancing the solubility of hydrophobic chemotherapeutics, rapid cellular uptake, triggered erosion and drug release, bio-stimulus sensitivity, improvement in the targeting and proficiency ofbioactive. Cationic PUs can easily be condensed with genetic material to form polyplexes and have shown excellent transfection efficiency for potential gene therapy against various cancers. Their modifiable chemistry offers a tool to impart the desired multifunctionality such as biocompatibility, sensitivity to pH, redox, temperature, enzyme, etc. and ligand conjugation for active targeting. These diverse exceptional properties make them excellent nano-carrier for a variety of bioactive, including chemotherapeutic drugs, DNA, RNA, and diagnostic moieties to the target tissue or cells. The PUs based nano-devices have certainly uncovered the path to achieve ideal systems for controlled personalized therapy. The literature discussed in this review shed light on the research innovations carried out in the last ten years for the development of multifunctional PUs for triggered delivery of bioactive to treat various cancers.


Asunto(s)
Neoplasias , Poliuretanos , Portadores de Fármacos/uso terapéutico , Sistemas de Liberación de Medicamentos , Humanos , Concentración de Iones de Hidrógeno , Micelas , Neoplasias/tratamiento farmacológico , Polímeros/uso terapéutico
9.
Sci Rep ; 7(1): 11086, 2017 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-28894228

RESUMEN

The aim of this work was to enhance the transportation of the galantamine to the brain via ascorbic acid grafted PLGA-b-PEG nanoparticles (NPs) using SVCT2 transporters of choroid plexus. PLGA-b-PEG copolymer was synthesized and characterized by 1H NMR, gel permeation chromatography, and differential scanning calorimetry. PLGA-b-PEG-NH2 and PLGA-b-mPEG NPs were prepared by nanoprecipitation method. PLGA-b-PEG NPs with desirable size, polydispersity, and drug loading were used for the conjugation with ascorbic acid (PLGA-b-PEG-Asc) to facilitate SVCT2 mediated transportation of the same into the brain. The surface functionalization of NPs with ascorbic acid significantly increased cellular uptake of NPs in SVCT2 expressing NIH/3T3 cells as compared to plain PLGA and PLGA-b-mPEG NPs. In vivo pharmacodynamic efficacy was evaluated using Morris Water Maze Test, Radial Arm Maze Test and AChE activity in scopolamine induced amnetic rats. In vivo pharmacodynamic studies demonstrated significantly higher therapeutic and sustained action by drug loaded PLGA-b-PEG-Asc NPs than free drugs and drug loaded plain PLGA as well as PLGA-b-mPEG NPs. Additionally, PLGA-b-PEG-Asc NPs resulted in significantly higher biodistribution of the drug to the brain than other formulations. Hence, the results suggested that targeting of bioactives to the brain by ascorbic acid grafted PLGA-b-PEG NPs is a promising approach.


Asunto(s)
Ácido Ascórbico/química , Encéfalo/efectos de los fármacos , Inhibidores de la Colinesterasa/administración & dosificación , Portadores de Fármacos/química , Galantamina/administración & dosificación , Nanopartículas/química , Polímeros/química , Animales , Encéfalo/metabolismo , Línea Celular , Inhibidores de la Colinesterasa/farmacocinética , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Activación Enzimática/efectos de los fármacos , Galantamina/farmacocinética , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Nanopartículas/ultraestructura , Tamaño de la Partícula , Polietilenglicoles/química , Poliglactina 910/química , Ratas , Distribución Tisular
10.
AAPS PharmSciTech ; 10(4): 1186-92, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19856107

RESUMEN

The aim of the present report was to develop nonionic surfactant vesicles (niosomes) to improve poor and variable oral bioavailability of griseofulvin. Niosomes were prepared by using different nonionic surfactants span 20, span 40, and span 60. The lipid mixture consisted of surfactant, cholesterol, and dicetyl phosphate in the molar ratio of 125:25:1.5, 100:50:1.5, and 75:75:1.5, respectively. The niosomal formulations were prepared by thin film method and ether injection method. The influence of different formulation variables such as surfactant type, surfactant concentration, and cholesterol concentration was optimized for size distribution and entrapment efficiency for both methods. Result indicated that the niosomes prepared by thin film method with span 60 provided higher entrapment efficiency. The niosomal formulation exhibited significantly retarded in vitro release as compared with free drug. The in vivo study revealed that the niosomal dispersion significantly improved the oral bioavailability of griseofulvin in albino rats after a single oral dose. The maximum concentration (Cmax) achieved in case of niosomal formulation was approximately double (2.98 microg/ml) as compared to free drug (1.54 microg/ml). Plasma drug profile also suggested that the developed niosomal system also has the potential of maintaining therapeutic level of griseofulvin for a longer period of time as compared to free griseofulvin. The niosomal formulation showed significant increase in area under the curve0-24 (AUC; 41.56 microg/ml h) as compared to free griseofulvin (22.36 microg/ml h) reflecting sustained release characteristics. In conclusion, the niosomal formulation could be one of the promising delivery system for griseofulvin with improved oral bioavailability and prolonged drug release profiles.


Asunto(s)
Antifúngicos/administración & dosificación , Griseofulvina/administración & dosificación , Administración Oral , Animales , Área Bajo la Curva , Disponibilidad Biológica , Estabilidad de Medicamentos , Griseofulvina/química , Griseofulvina/farmacocinética , Liposomas/administración & dosificación , Masculino , Ratas , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...