Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 801: 149693, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34467907

RESUMEN

Appropriate produced water (PW) management is critical for oil and gas industry. Understanding PW quantity and quality trends for one well or all similar wells in one region would significantly assist operators, regulators, and water treatment/disposal companies in optimizing PW management. In this research, historical PW quantity and quality data in the New Mexico portion (NM) of the Permian Basin from 1995 to 2019 was collected, pre-processed, and analyzed to understand the distribution, trend and characteristics of PW production for potential beneficial use. Various machine learning algorithms were applied to predict PW quantity for different types of oil and gas wells. Both linear and non-linear regression approaches were used to conduct the analysis. The prediction results from five-fold cross-validation showed that the Random Forest Regression model reported high prediction accuracy. The AutoRegressive Integrated Moving Average model showed good results for predicting PW volume in time series. The water quality analysis results showed that the PW samples from the Delaware and Artesia Formations (mostly from conventional wells) had the highest and the lowest average total dissolved solids concentrations of 194,535 mg/L and 100,036 mg/L, respectively. This study is the first research that comprehensively analyzed and predicted PW quantity and quality in the NM-Permian Basin. The results can be used to develop a geospatial metrics analysis or facilitate system modeling to identify the potential opportunities and challenges of PW management alternatives within and outside oil and gas industry. The machine learning techniques developed in this study are generic and can be applied to other basins to predict PW quantity and quality.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Aprendizaje Automático , Yacimiento de Petróleo y Gas , Contaminantes Químicos del Agua/análisis , Calidad del Agua , Pozos de Agua
2.
Biomed Pharmacother ; 121: 109601, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31739159

RESUMEN

BACKGROUND: Phosphoenolpyruvate carboxykinase (PEPCK) catalyzes the decarboxylation of oxaloacetate to phosphoenolpyruvate. The mitochondrial isozyme, PEPCK-M is highly expressed in cancer cells, where it plays a role in nutrient stress response. To date, pharmacological strategies to target this pathway have not been pursued. METHODS: A compound embodying a 3-alkyl-1,8-dibenzylxanthine nucleus (iPEPCK-2), was synthesized and successfully probed in silico on a PEPCK-M structural model. Potency and target engagement in vitro and in vivo were evaluated by kinetic and cellular thermal shift assays (CETSA). The compound and its target were validated in tumor growth models in vitro and in murine xenografts. RESULTS: Cross-inhibitory capacity and increased potency as compared to 3-MPA were confirmed in vitro and in vivo. Treatment with iPEPCK-2 inhibited cell growth and survival, especially in poor-nutrient environment, consistent with an impact on colony formation in soft agar. Finally, daily administration of the PEPCK-M inhibitor successfully inhibited tumor growth in two murine xenograft models as compared to vehicle, without weight loss, or any sign of apparent toxicity. CONCLUSION: We conclude that iPEPCK-2 is a compelling anticancer drug targeting PEPCK-M, a hallmark gene product involved in metabolic adaptations of the tumor.


Asunto(s)
Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Biomarcadores de Tumor/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Fosfoenolpiruvato Carboxiquinasa (ATP)/antagonistas & inhibidores , Fosfoenolpiruvato Carboxiquinasa (ATP)/metabolismo , Animales , Biomarcadores de Tumor/genética , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Femenino , Células HCT116 , Células HEK293 , Humanos , Células MCF-7 , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Fosfoenolpiruvato Carboxiquinasa (ATP)/genética , Estructura Secundaria de Proteína , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA