RESUMEN
1,2,4-Triazole derivatives have a wide range of biological activities. The most well-known drug that contains 1,2,4-triazole as part of its structure is the nucleoside analogue ribavirin, an antiviral drug. Finding new nucleosides based on 1,2,4-triazole is a topical task. The aim of this study was to synthesize ribosides and deoxyribosides of 1,2,4-triazole-3-thione derivatives and test their antiviral activity against herpes simplex viruses. Three compounds from a series of synthesized mono- and disubstituted 1,2,4-triazole-3-thione derivatives were found to be substrates for E. coli purine nucleoside phosphorylase. Of six prepared nucleosides, the riboside and deoxyriboside of 3-phenacylthio-1,2,4-triazole were obtained at good yields. The yields of the disubstituted 1,2,4-triazol-3-thiones were low due to the effect of bulky substituents at the C3 and C5 positions on the selectivity of enzymatic glycosylation for one particular nitrogen atom in the triazole ring. The results of cytotoxic and antiviral studies on acyclovir-sensitive wild-type strain HSV-1/L2(TK+) and acyclovir-resistant strain (HSV-1/L2/RACV) in Vero E6 cell culture showed that the incorporation of a thiobutyl substituent into the C5 position of 3-phenyl-1,2,4-triazole results in a significant increase in the cytotoxicity of the base and antiviral activity. The highest antiviral activity was observed in the 3-phenacylthio-1-(ß-D-ribofuranosyl)-1,2,4-triazole and 5-butylthio-1-(2-deoxy-ß-D-ribofuranosyl)-3-phenyl-1,2,4-triazole nucleosides, with their selectivity indexes being significantly higher than that of ribavirin. It was also found that with the increasing lipophilicity of the nucleosides, the activity and toxicity of the tested compounds increased.
Asunto(s)
Antivirales , Escherichia coli , Nucleósidos , Purina-Nucleósido Fosforilasa , Triazoles , Triazoles/química , Triazoles/farmacología , Triazoles/síntesis química , Purina-Nucleósido Fosforilasa/metabolismo , Purina-Nucleósido Fosforilasa/antagonistas & inhibidores , Antivirales/farmacología , Antivirales/síntesis química , Antivirales/química , Escherichia coli/efectos de los fármacos , Escherichia coli/enzimología , Nucleósidos/química , Nucleósidos/síntesis química , Nucleósidos/farmacología , Tionas/química , Tionas/farmacología , Tionas/síntesis química , Animales , Chlorocebus aethiops , Células VeroRESUMEN
A series of ribo- and deoxyribonucleosides bearing 2-aminopurine as a nucleobase with 7,8-difluoro- 3,4-dihydro-3-methyl-2H-[1,4]benzoxazine (conjugated directly or through an aminohexanoyl spacer) was synthesized using an enzymatic transglycosylation reaction. Nucleosides 3-6 were resistant to deamination under action of adenosine deaminase (ADA) Escherichia coli and ADA from calf intestine. The antiviral activity of the modified nucleosides was evaluated against herpes simplex virus type 1 (HSV-1, strain L2). It has been shown that at sub-toxic concentrations, nucleoside (S)-4-[2-amino-9-(ß-D-ribofuranosyl)-purin-6-yl]-7,8-difluoro-3,4-dihydro-3-methyl-2H-[1,4]benzoxazine exhibit significant antiviral activity (SI > 32) on the model of HSV-1 in vitro, including an acyclovir-resistant virus strain (HSV-1, strain L2/R).
Asunto(s)
Adenosina Desaminasa/metabolismo , Antivirales/metabolismo , Benzoxazinas/química , Nucleósidos de Purina/biosíntesis , Animales , Antivirales/química , Antivirales/farmacología , Supervivencia Celular/efectos de los fármacos , Chlorocebus aethiops , Farmacorresistencia Viral/efectos de los fármacos , Escherichia coli/enzimología , Proteínas de Escherichia coli/metabolismo , Herpesvirus Humano 1/efectos de los fármacos , Humanos , Nucleósidos de Purina/química , Nucleósidos de Purina/farmacología , Estereoisomerismo , Células VeroRESUMEN
Using the enzymatic transglycosylation reaction ß-d-ribo- and 2'-deoxyribofuranosides of 2-amino-5,6-difluorobenzimidazole nucleosides have been synthesized. 2-Amino-5,6-difluoro-benzimidazole riboside proved to exhibit a selective antiviral activity (selectivity index >32) against a wild strain of the herpes simplex virus type 1, as well as towards virus strains that are resistant to acyclovir, cidofovir, and foscarnet. We believe that this compound might be used for treatment of herpes infections in those cases, when acyclovir is not efficient.
Asunto(s)
Antivirales/síntesis química , Bencimidazoles/química , Nucleósidos/química , Aciclovir/farmacología , Antivirales/farmacología , Cidofovir , Citosina/análogos & derivados , Citosina/farmacología , Farmacorresistencia Viral/efectos de los fármacos , Foscarnet/farmacología , Herpesvirus Humano 1/efectos de los fármacos , Humanos , Nucleósidos/farmacología , Organofosfonatos/farmacologíaRESUMEN
The antiviral activity against HIV and HSV and the chemical stability of ACV phosphoramidate derivatives were studied. The phosphoramidates of ACV demonstrated moderate activity. The best compound appeared to be 9-(2-hydroxymethyl)guanine phosphoromonomorpholidate (7), which inhibited virus replication in pseudo-HIV-1 particles by 50% at 50 µM. It also inhibited replication of wild-type HSV-1 (9.7 µM) as well as an acyclovir-resistant strain (25 µM). None of the synthesised compounds showed any cytotoxicity.