Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
1.
Mycopathologia ; 189(4): 60, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38940953

RESUMEN

INTRODUCTION: Candidemia, a bloodstream infection predominantly affecting critically ill patients, poses a significant global health threat especially with the emergence of non-albicans Candida species, including drug-resistant strains. In Brazil, limited access to advanced diagnostic tools and trained microbiologists hampers accurate identification of Candida species and susceptibility to antifungals testing hindering surveillance efforts. METHODS: We conducted a systematic review spanning publications from 2017 to 2023 addressing Candida species distribution and antifungal susceptibility among Brazilian patients with candidemia. RESULTS: Despite initially identifying 7075 records, only 16 met inclusion criteria providing accurate information of 2305 episodes of candidemia. The predominant species were C. albicans, C. parapsilosis, and C. tropicalis, followed by notable proportions of Nakaseomyces glabratus. Limited access to diagnostic tests was evident as only 5 out of 16 studies on candidemia were able to report antifungal susceptibility testing results. In vitro resistance to echinocandins was rare (only 6/396 isolates, 1,5%). In counterpart, fluconazole exhibited resistance rates ranging from 0 to 43%, with great heterogeneity among different studies and species of Candida considered. CONCLUSION: Our review underscores the critical need for enhanced surveillance and research efforts to address the evolving landscape of candidemia and antifungal resistance in Brazil. Despite some limitations, available data suggest that while resistance to echinocandins and amphotericin B remains rare, there is a growing concern regarding resistance to fluconazole among Candida species.


Asunto(s)
Antifúngicos , Candida , Candidemia , Farmacorresistencia Fúngica , Pruebas de Sensibilidad Microbiana , Candidemia/epidemiología , Candidemia/microbiología , Candidemia/diagnóstico , Candidemia/tratamiento farmacológico , Brasil/epidemiología , Humanos , Antifúngicos/farmacología , Candida/efectos de los fármacos , Candida/aislamiento & purificación , Candida/clasificación
2.
Artículo en Inglés | MEDLINE | ID: mdl-38852850

RESUMEN

OBJECTIVE: Despite the increasing reports of blaNDM in Enterobacterales in Brazil, comprehensive whole genome sequencing (WGS) data remains scarce. To address this knowledge gap, our study focuses on the characterization of the genome of an NDM-1-producing Klebsiella quasipneumoniae subsp. quasipneumoniae (KQPN) clinical strain isolated in Brazil. METHODS: The antimicrobial susceptibility profile of the A-73.113 strain was performed by agar dilution or broth microdilution following the BrCAST/EUCAST recommendations. WGS was performed using the Illumina® NextSeq platform and the generated reads were assembled using the SPAdes software. The sequences obtained were submitted to the bioinformatics pipelines to determine the sequence type, resistome, plasmidome, and virulome. RESULTS: The A-73.113 strain was identified as KQPN and was susceptible to polymyxins (MICs, ≤0.25 µg/mL), tigecycline (MIC, 0.5 µg/mL), ciprofloxacin (MIC, 0.5 µg/mL), and levofloxacin (MIC, 1 µg/mL). WGS analysis revealed the presence of genes conferring resistance to ß-lactams (blaNDM-1, blaCTX-M-15, blaOXA-9, blaOKP-A-5, blaTEM-1), aminoglycosides [aph(3')-VI, aadA1, aac(6')-Ib], and fluoroquinolones (oqxAB, qnrS1, aac(6')-Ib-cr]. Additionally, it was verified the presence of the plasmid replicons Col(pHAD28), IncFIA(HI1), IncFIB(K) (pCAV1099-114), IncFIB(pQil), and IncFII(K), as well as virulence-encoding genes: fimABCDEFGHIK (type 1 fimbria), pilW (type IV pili), iutA (aerobactin), entABCDEFS/fepABCDG/fes (Ent siderophores), iroE (salmochelin), and allABCDRS (allantoin utilization). Furthermore, we found that A-73.113 strain belongs to ST1040. CONCLUSION: Here we report the genomic characteristics of an NDM-1-producing KQPN ST1040 strain isolated from blood culture in Brazil. These data will enhance our comprehension of how this species contributes to the acquisition and dissemination of blaNDM-1 in Brazilian nosocomial settings.

3.
Int J Food Microbiol ; 418: 110726, 2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38704995

RESUMEN

Pet food have been considered as possible vehicles of bacterial pathogens. The sudden boom of the pet food industry due to the worldwide increase in companion animal ownership calls for pet food investigations. Herein, this study aimed to determine the frequency, antimicrobial susceptibility profile, and molecular characteristics of coagulase-negative staphylococci (CoNS) in different pet food brands in Brazil. Eighty-six pet food packages were screened for CoNS. All isolates were identified at species level by MALDI-TOF MS and species-specific PCR. Antimicrobial susceptibility testing was performed by disc diffusion and broth microdilution (vancomycin and teicoplanin only) methods. The D-test was used to screen for inducible clindamycin phenotype (MLS-B). SCCmec typing and detection of mecA, vanA, vanB, and virulence-encoding genes were done by PCR. A total of 16 (18.6 %) CoNS isolates were recovered from pet food samples. Isolates were generally multidrug-resistant (MDR). All isolates were completely resistant (100 %) to penicillin. Resistances (12.5 % - 75 %) were also observed for fluoroquinolones, sulfamethoxazole-trimethoprim, tetracycline, rifampicin, erythromycin, and tobramycin. Isolates were susceptible to vancomycin (MICs <0.25-1 µg/mL) and teicoplanin (MICs <0.25-4 µg/mL). Intriguingly, 3/8 (37.5 %) CoNS isolates with the ERYRCLIS antibiotype expressed MLS-B phenotype. All isolates harboured blaZ gene. Seven (43.8 %) isolates carried mecA; and among them, the SCCmec Type III was the most frequent (n = 5/7; 71.4 %). Isolates also harboured seb, see, seg, sej, sem, etb, tsst, pvl, and hla toxin virulence-encoding genes (6.3 % - 25 %). A total of 12/16 (75 %) isolates were biofilm producers, while the icaAB gene was detected in an S. pasteuri isolate. Herein, it is shown that pet food is a potential source of clinically important Gram-positive bacterial pathogens. To the best of our knowledge, this is the first report of MLS-B phenotype and MR-CoNS in pet food in Latin America.


Asunto(s)
Antibacterianos , Clindamicina , Coagulasa , Pruebas de Sensibilidad Microbiana , Staphylococcus , Staphylococcus/efectos de los fármacos , Staphylococcus/genética , Staphylococcus/aislamiento & purificación , Brasil , Antibacterianos/farmacología , Coagulasa/metabolismo , Animales , Clindamicina/farmacología , Meticilina/farmacología , Alimentación Animal/microbiología , Microbiología de Alimentos , Mascotas/microbiología , Farmacorresistencia Bacteriana Múltiple/genética
4.
Chemosphere ; 357: 141918, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38614394

RESUMEN

Aeromonas spp. are frequently encountered in aquatic environments, with Aeromonas veronii emerging as an opportunistic pathogen causing a range of diseases in both humans and animals. Recent reports have raised public health concerns due to the emergence of multidrug-resistant Aeromonas spp. This is particularly noteworthy as these species have demonstrated the ability to acquire and transmit antimicrobial resistance genes (ARGs). In this study, we report the genomic and phenotypic characteristics of the A. veronii TR112 strain, which harbors a novel variant of the Vietnamese Extended-spectrum ß-lactamase-encoding gene, blaVEB-28, and two mcr variants recovered from an urban river located in the Metropolitan Region of São Paulo, Brazil. A. veronii TR112 strain exhibited high minimum inhibitory concentrations (MICs) for ceftazidime (64 µg/mL), polymyxin (8 µg/mL), and ciprofloxacin (64 µg/mL). Furthermore, the TR112 strain demonstrated adherence to HeLa and Caco-2 cells within 3 h, cytotoxicity to HeLa cells after 24 h of interaction, and high mortality rates to the Galleria mellonella model. Genomic analysis showed that the TR112 strain belongs to ST257 and presented a range of ARGs conferring resistance to ß-lactams (blaVEB-28, blaCphA3, blaOXA-912) and polymyxins (mcr-3 and mcr-3.6). Additionally, we identified a diversity of virulence factor-encoding genes, including those encoding mannose-sensitive hemagglutinin (Msh) pilus, polar flagella, type IV pili, type II secretion system (T2SS), aerolysin (AerA), cytotoxic enterotoxin (Act), hemolysin (HlyA), hemolysin III (HlyIII), thermostable hemolysin (TH), and capsular polysaccharide (CPS). In conclusion, our findings suggest that A. veronii may serve as an environmental reservoir for ARGs and virulence factors, highlighting its importance as a potential pathogen in public health.


Asunto(s)
Aeromonas veronii , Antibacterianos , Pruebas de Sensibilidad Microbiana , Ríos , beta-Lactamasas , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , Humanos , Antibacterianos/farmacología , Ríos/microbiología , Aeromonas veronii/genética , Aeromonas veronii/aislamiento & purificación , Aeromonas veronii/efectos de los fármacos , Brasil , Células HeLa , Células CACO-2 , Animales , Farmacorresistencia Bacteriana Múltiple/genética
5.
Sci Rep ; 14(1): 9383, 2024 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654061

RESUMEN

Brazil is recognized for its biodiversity and the genetic variability of its organisms. This genetic variability becomes even more valuable when it is properly documented and accessible. Understanding bacterial diversity through molecular characterization is necessary as it can improve patient treatment, reduce the length of hospital stays and the selection of resistant bacteria, and generate data for health and epidemiological surveillance. In this sense, in this study, we aimed to understand the biodiversity and molecular epidemiology of carbapenem-resistant bacteria in clinical samples recovered in the state of Rondônia, located in the Southwest Amazon region. Retrospective data from the Central Public Health Laboratories (LACEN/RO) between 2018 and 2021 were analysed using the Laboratory Environment Manager Platform (GAL). Seventy-two species with carbapenem resistance profiles were identified, of which 25 species carried at least one gene encoding carbapenemases of classes A (blaKPC-like), B (blaNDM-like, blaSPM-like or blaVIM-like) and D (blaOXA-23-like, blaOXA-24-like, blaOXA-48-like, blaOXA-58-like or blaOXA-143-like), among which we will highlight Klebsiella pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii, Serratia marcescens, and Providencia spp. With these results, we hope to contribute to the field by providing epidemiological molecular data for state surveillance on bacterial resistance and assisting in public policy decision-making.


Asunto(s)
Biodiversidad , Carbapenémicos , beta-Lactamasas , Brasil , Humanos , Carbapenémicos/farmacología , beta-Lactamasas/genética , Estudios Retrospectivos , Antibacterianos/farmacología , Acinetobacter baumannii/genética , Acinetobacter baumannii/efectos de los fármacos , Acinetobacter baumannii/aislamiento & purificación , Proteínas Bacterianas/genética , Pruebas de Sensibilidad Microbiana , Bacterias/genética , Bacterias/efectos de los fármacos , Bacterias/clasificación , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/aislamiento & purificación , Farmacorresistencia Bacteriana/genética , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/aislamiento & purificación
7.
One Health ; 17: 100591, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37388190

RESUMEN

Serratia marcescens is a Gram-negative bacterium presenting intrinsic resistance to polymyxins that has emerged as an important human pathogen. Although previous studies reported the occurrence of multidrug-resistance (MDR) S. marcescens isolates in the nosocomial settings, herein, we described isolates of this extensively drug-resistant (XDR) species recovered from stool samples of food-producing animals in the Brazilian Amazon region. Three carbapenem-resistant S. marcescens strains were recovered from stool samples of poultry and cattle. Genetic similarity analysis showed that these strains belonged to the same clone. Whole-genome sequencing of a representative strain (SMA412) revealed a resistome composed of genes encoding resistance to ß-lactams [blaKPC-2, blaSRT-2], aminoglycosides [aac(6')-Ib3, aac(6')-Ic, aph(3')-VIa], quinolones [aac(6')-Ib-cr], sulfonamides [sul2], and tetracyclines [tet(41)]. In addition, the analysis of the virulome demonstrated the presence of important genes involved in the pathogenicity of this species (lipBCD, pigP, flhC, flhD, phlA, shlA, and shlB). Our data demonstrate that food-animal production can act as reservoirs for MDR and virulent strains of S. marcescens.

8.
Microorganisms ; 11(4)2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37110475

RESUMEN

The detection of KPC-type carbapenemases is necessary for guiding appropriate antibiotic therapy and the implementation of antimicrobial stewardship and infection control measures. Currently, few tests are capable of differentiating carbapenemase types, restricting the lab reports to their presence or not. The aim of this work was to raise antibodies and develop an ELISA test to detect KPC-2 and its D179 mutants. The ELISA-KPC test was designed using rabbit and mouse polyclonal antibodies. Four different protocols were tested to select the bacterial inoculum with the highest sensitivity and specificity rates. The standardisation procedure was performed using 109 previously characterised clinical isolates, showing 100% of sensitivity and 89% of specificity. The ELISA-KPC detected all isolates producing carbapenemases, including KPC variants displaying the ESBL phenotype such as KPC-33 and -66.

9.
J Antimicrob Chemother ; 78(6): 1359-1366, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37038995

RESUMEN

OBJECTIVES: To characterize a novel acquired MBL, BIM-1, in a Pseudomonas #2 (subgroup P. guariconensis) strain isolated from the Aurá river located in the Brazilian Amazon hydrographic basin. METHODS: WGS using an Illumina® MiSeq System was used to characterize the genome of Pseudomonas sp. IEC33019 strain. Southern blotting/hybridization assays were performed to confirm the location of the MBL-encoding gene, blaBIM-1 (Belém Imipenemase). Antimicrobial susceptibility testing, cloning, and biochemical and phenotypic characterization were performed to determine BIM-1 kinetics. RESULTS: The IEC33019 strain showed high resistance rates to ß-lactams, ciprofloxacin and aminoglycosides, being susceptible only to polymyxins and susceptible, increased exposure to aztreonam. WGS analysis revealed a novel acquired MBL-encoding gene, blaBIM-1, found as a gene cassette inserted into a class 1 integron (In1326) that also carried qnrVC1 and aadA11e. In1326 was located in a complex transposon, Tn7122, carried by a 52.7 kb conjugative plasmid (pIEC33019) with a toxin/antitoxin system (vapB/vapC). BIM-1 belongs to the molecular subgroup B1 and shares 70.2% and 64.9% similarity with SIM-1 and IMP-1, respectively. Kinetics analysis of BIM-1 showed hydrolytic activity against all ß-lactams tested. CONCLUSIONS: BIM-1 is a novel acquired MBL encoded by a gene carried by mobile genetic elements, which can be transferred to other Gram-negative bacilli (GNB). Because the IEC33019 strain was recovered from a river impacted by a populous metropolitan region with poor basic sanitation and served by limited potable freshwater, it would be important to establish the role of the BIM-1-producing GNB as nosocomial pathogens and/or as colonizers of the riverside population in this geographical region.


Asunto(s)
Pseudomonas , beta-Lactamasas , Pseudomonas/genética , beta-Lactamasas/genética , Brasil/epidemiología , Pseudomonas aeruginosa/genética , Antibacterianos/farmacología , beta-Lactamas , Pruebas de Sensibilidad Microbiana
10.
Microorganisms ; 11(3)2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36985155

RESUMEN

S. pseudintermedius is a known resident of the skin and mucous membranes and a constituent of the normal microbiota of dogs. It has also been recognized as an opportunistic and zoonotic pathogen that is able to colonize humans and cause severe diseases, especially in immunocompromised hosts. Most importantly, methicillin-resistant S. pseudintermedius (MRSP), which is intrinsically multidrug-resistant, has emerged with serious public health consequences. The epidemiological situation is further exacerbated with reports of its zoonotic transmission and human infections which have been mostly attributed to the increasing frequency of dog ownership and close contact between dogs and humans. Evidence on the zoonotic transmission of MRSP from pet dogs to humans (such as dog owners, small-animal veterinarians, and other people in close proximity to dogs) is limited, especially due to the misidentification of S. pseudintermedius as S. aureus. Despite this fact, reports on the increasing emergence and spread of MRSP in humans have been increasing steadily over the years since its first documented report in 2006 in Belgium. The emergence of MRSP strains has further compromised treatment outcomes in both veterinary and human medicine as these strains are resistant to beta-lactam antimicrobials usually prescribed as first line treatment. Frustratingly, the limited awareness and surveillance of the zoonotic transmission of S. pseudintermedius have underestimated their extent of transmission, prevalence, epidemiology, and public health significance. In order to fill this gap of information, this review focused on detailed reports on zoonotic transmission, human colonization, and infections by S. pseudintermedius, their pathogenic features, antimicrobial resistance profiles, epidemiology, risk factors, and treatment. In writing this review, we searched Web of Science, PubMed, and SCOPUS databases using the keyword "Staphylococcus pseudintermedius AND humans". A phylogenetic tree to determine the genetic relatedness/diversity of publicly available genomes of S. pseudintermedius was also constructed.

11.
Antibiotics (Basel) ; 12(2)2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36830148

RESUMEN

Fosfomycin disodium is a potential therapeutic option to manage difficult-to-treat infections, especially when combined with other antimicrobials. In this study, we evaluated the activity of fosfomycin in combination with meropenem or polymyxin B against contemporaneous KPC-2-producing K. pneumoniae clinical isolates (KPC-KPN). Synergistic activity was assessed by checkerboard (CKA) and time-kill (TKA) assays. TKA was performed using serum peak and trough concentrations. The activity of these combinations was also assessed in the Galleria mellonella model. Biofilm disruption was assessed by the microtiter plate technique. CKA resulted in an 8- to 2048-fold decrease in meropenem MIC, restoring meropenem activity for 82.4% of the isolates when combined with fosfomycin. For the fosfomycin + polymyxin B combination, a 2- to 128-fold reduction in polymyxin B MIC was achieved, restoring polymyxin B activity for 47% of the isolates. TKA resulted in the synergism of fosfomycin + meropenem (3.0-6.7 log10 CFU/mL decrease) and fosfomycin + polymyxin B (6.0-6.2 log10 CFU/mL decrease) at peak concentrations. All larvae treated with fosfomycin + meropenem survived. Larvae survival rate was higher with fosfomycin monotherapy (95%) than that observed for fosfomycin + polymyxin B (75%) (p-value < 0.0001). Finally, a higher biofilm disruption was observed under exposure to fosfomycin + polymyxin B (2.4-3.4-fold reduction). In summary, we observed a synergistic effect of fosfomycin + meropenem and fosfomycin + polymyxin B combinations, in vitro and in vivo, against KPC-KPN, as well as biofilm disruption.

12.
Antibiotics (Basel) ; 11(12)2022 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-36551493

RESUMEN

This study aimed to characterize a Klebsiella pneumoniae strain (KP411) recovered from the stool samples of poultry (Gallus gallus) in the Brazilian Amazon Region. The whole-genome sequencing of KP411 revealed the presence of an important arsenal of antimicrobial resistance genes to ß-lactams (blaCTX-M-14, blaTEM-1B, blaKPC-2, blaSVH-11), aminoglycosides [aph(3″)- Ib, aph(6)-Id, aph(3')-Ia], sulfonamides (sul1, sul2), quinolones (oqxAB), fosfomycin (fosAKP), and macrolides [mph(A)]. Furthermore, our analyses revealed that the KP411 strain belongs to the ST258 clonal lineage, which is one of the main epidemic clones responsible for the dissemination of KPC-2 worldwide. Our data suggest that food-producing animals may act as reservoirs of multidrug-resistant K. pneumoniae belonging to the ST258 clone, and, consequently, contribute to their dissemination to humans and the environment.

13.
Antimicrob Agents Chemother ; 66(12): e0083922, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36377877

RESUMEN

Since its first report, the class A Brazilian Klebsiella carbapenemase (BKC) has been detected only among Enterobacterales isolates from Brazilian hospitals. In this study, we characterized a multidrug-resistant Pseudomonas juntendi clinical isolate and identified a 43.3-kb plasmid carrying blaBKC-1 and a class 1 integron (In1996) containing the arr-2, qnrVC1, dfrA21, and aac(6')-Ib' gene cassettes. Our results confirm the ability of Pseudomonas putida group isolates to acquire antimicrobial resistance determinants and further act as resistance reservoirs.


Asunto(s)
Carbapenémicos , Pseudomonas putida , Carbapenémicos/farmacología , Klebsiella , Pseudomonas putida/genética , Brasil , Antibacterianos/farmacología , Pseudomonas , beta-Lactamasas/genética , Proteínas Bacterianas/genética , Pruebas de Sensibilidad Microbiana
14.
Microb Drug Resist ; 28(11): 1037-1042, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36318798

RESUMEN

Typing carbapenem-resistant Klebsiella pneumoniae (CR-KPN) is crucial in controlling their dissemination and solving outbreaks. In this context, we searched for an effective, faster, and cheaper alternative technique to type KPN by analyzing the fosAKP sequence. We analyzed the nucleotide sequences of chromosomal fosAKP gene in 350 KPN genomes (70 per sequence type [ST] or clonal complex [CC]). Assembly genomes were randomly downloaded from NCBI and annotated using RAST in PATRIC platform. The isolate STs were verified using multilocus sequence typing 2.0 by the Center for Genomic Epidemiology. Chromosomally encoded fosAKP was confirmed in MLplasmid, and the sequence alignments were performed in Clustal Omega. The amino acid sequences were analyzed using SNAP2 and SMART platforms. Out of the 70 genomes analyzed for each ST/CC, we observed 100% fosA sequence identity for CC258/11, ST15, ST307, and ST101. For ST16, only two fosA sequences were different from each other. We observed differences in amino acid sequences at positions 25 and 79 (ST16) and 86 (ST16, ST101). The C-terminal (amino acid 138, 139, 140) was different for each cluster. None of these polymorphisms is related to the protein active site. Moreover, L25Q (ST16) polymorphism was predicted to probably affect the protein function. We observed that chromosomal fosAKP sequences from KPN are highly conserved in ST15, ST307, ST16, ST101, and CC258/11, suggesting fosAKP sequencing as an alternative, easier, faster, and less expensive technique in identifying epidemiological STs for KPN, and discriminating them from CC258/11.


Asunto(s)
Infecciones por Klebsiella , Klebsiella pneumoniae , Humanos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Infecciones por Klebsiella/tratamiento farmacológico , Infecciones por Klebsiella/epidemiología , beta-Lactamasas/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Antibacterianos/farmacología , Tipificación de Secuencias Multilocus , Células Clonales/metabolismo , Pruebas de Sensibilidad Microbiana
15.
Br J Nurs ; 31(19): S26-S31, 2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36306235

RESUMEN

HIGHLIGHTS: Compare effectiveness of chemical disinfectants in reducing S. aureus. Five disinfectants reduced the bacterial load, especially chlorhexidine solutions. Focus on Brazilian clinical practice of needleless connector disinfection. PURPOSE: This study aimed to gain further knowledge about the comparative effectiveness of chemical disinfectants in reducing the bacterial load of NCs inoculated with S. aureus. METHODS: Disinfection of needleless connectors was undertaken in vitro against S. aureus comparing 70% isopropyl alcohol (IPA), 70% ethanol, 0.5% and 2% chlorhexidine in 70% IPA applied with gauze, and 70% IPA single-use cap (Site-Scrub®). RESULTS: All disinfectants reduced the bacterial load (P<0.001), especially the chlorhexidine solutions. Mechanical friction should follow guidelines. CONCLUSION: This study found that all tested disinfectants effectively reduced the bacterial load and more clinical studies must be developed with a focus on the Brazilian clinical practice of needleless connector disinfection.


Asunto(s)
Desinfectantes , Desinfección , Humanos , Staphylococcus aureus , Clorhexidina , Contaminación de Equipos/prevención & control , Carga Bacteriana , Desinfectantes/farmacología , 2-Propanol/farmacología , Etanol
16.
Comp Immunol Microbiol Infect Dis ; 89: 101870, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36088796

RESUMEN

To determine the antibiotypes and frequency of toxin genes in methicillin-resistant Staphylococcus pseudintermedius (MRSP), 281 nasal swab samples were collected from dogs and dog guardians in Abakaliki, Southeastern Nigeria. Antimicrobial susceptibility testing was determined by disc diffusion technique while detection of toxin genes was carried out by PCR. Exactly 41 (28.7 %) and 6 (4.3 %) MRSP were obtained from dogs and dog guardians respectively. Isolates exhibited resistance (100-16.7 %) to amoxicillin-clavulanic acid, cephalosporins, fluoroquinolones, and carbapenems. Seccanine, lukD, siet, and exi toxin genes were harboured by 42 (89.4 %), 47 (100 %), 37 (78.7 %), and 2 (4.3 %) MRSP isolates respectively. This study has shown that dogs and dog guardians in Abakaliki, Southeastern Nigeria are colonized by multiple drug-resistant MRSP which harbour toxin genes. This represents a significant public health problem in veterinary and human medicine.


Asunto(s)
Antiinfecciosos , Enfermedades de los Perros , Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Combinación Amoxicilina-Clavulanato de Potasio , Animales , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Carbapenémicos , Cefalosporinas , Enfermedades de los Perros/epidemiología , Perros , Fluoroquinolonas , Humanos , Resistencia a la Meticilina/genética , Pruebas de Sensibilidad Microbiana/veterinaria , Nigeria/epidemiología , Infecciones Estafilocócicas/epidemiología , Infecciones Estafilocócicas/veterinaria , Staphylococcus
17.
J Glob Antimicrob Resist ; 31: 165-166, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36064106

RESUMEN

OBJECTIVE: Herein, this study aimed to perform the genomic characterization of a blaKPC-2 positive Klebsiella pneumoniae (KP1.1JP) strain isolated from the surface water of river located the Brazilian Amazon region. METHODS: Antimicrobial susceptibility testing was performed following BrCAST/EUCAST recommendations. Genomic DNA was extracted and sequenced using the Illumina® NextSeq platform and the assembly of the generated reads was performed using the SPAdes software. Research on the sequence type, resistance and virulence encoding genes, and plasmid replicon typing was carried out. RESULTS: The KP1.1JP strain was resistant to all ß-lactams, aminoglycosides, and fluoroquinolones tested. The genome size was 5 626 346 bp, distributed in 203 contigs and a guanine and cytosine content of 57.02%. The values of N50 and N75 were 285 583 bp and 173 927 bp, respectively. We verified that KP1.1JP belongs to ST101 and carries genes encoding resistance to ß-lactams (blaCTX-M-15, blaTEM-1B, blaOXA-1, blaSVH-182, and blaKPC-2), aminoglycosides [aac(3')-IIa, aph(3')-Vla], fluoroquinolones [aac(6')-Ib-cr], phenicol (catA1, catA2, catB3), tetracycline [tet(D)], trimethoprim (dfrA14), and fosfomycin (fosA). Additionally, the following virulence encoding genes were also detected: mrkABCDFHIJ (Fimbria type 3); fimABCDRFGHIK (Fimbria type 1); entABCDEFS and fepABCDG (siderophores); iroN, irp1, and irp2 (salmochelins); fyuA and ybtAEPQSTUX (yersiniabactin); and iutA (aerobactin). CONCLUSIONS: We report the occurrence of a K. pneumoniae ST101 strain carrying blaKPC-2 gene in an Amazon river in Brazil. The genomic characteristics of this strain will contribute to a better understanding of the spread of pathogens of clinical importance in the environment based on a One Health perspective.


Asunto(s)
Klebsiella pneumoniae , beta-Lactamasas , Aminoglicósidos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , beta-Lactamasas/genética , beta-Lactamas , Brasil , Fluoroquinolonas , Pruebas de Sensibilidad Microbiana , Ríos , Secuenciación Completa del Genoma
18.
Microbiol Spectr ; 10(5): e0056522, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-35993730

RESUMEN

The epidemiology of antimicrobial resistance (AMR) is complex, with multiple interfaces (human-animal-environment). In this context, One Health surveillance is essential for understanding the distribution of microorganisms and antimicrobial resistance genes (ARGs). This report describes a multicentric study undertaken to evaluate the bacterial communities and resistomes of food-producing animals (cattle, poultry, and swine) and healthy humans sampled simultaneously from five Brazilian regions. Metagenomic analysis showed that a total of 21,029 unique species were identified in 107 rectal swabs collected from distinct hosts, the highest numbers of which belonged to the domain Bacteria, mainly Ruminiclostridium spp. and Bacteroides spp., and the order Enterobacterales. We detected 405 ARGs for 12 distinct antimicrobial classes. Genes encoding antibiotic-modifying enzymes were the most frequent, followed by genes related to target alteration and efflux systems. Interestingly, carbapenemase-encoding genes such as blaAIM-1, blaCAM-1, blaGIM-2, and blaHMB-1 were identified in distinct hosts. Our results revealed that, in general, the bacterial communities from humans were present in isolated clusters, except for the Northeastern region, where an overlap of the bacterial species from humans and food-producing animals was observed. Additionally, a large resistome was observed among all analyzed hosts, with emphasis on the presence of carbapenemase-encoding genes not previously reported in Latin America. IMPORTANCE Humans and food production animals have been reported to be important reservoirs of antimicrobial resistance (AMR) genes (ARGs). The frequency of these multidrug-resistant (MDR) bacteria tends to be higher in low- and middle-income countries (LMICs), due mainly to a lack of public health policies. Although studies on AMR in humans or animals have been carried out in Brazil, this is the first multicenter study that simultaneously collected rectal swabs from humans and food-producing animals for metagenomics. Our results indicate high microbial diversity among all analyzed hosts, and several ARGs for different antimicrobial classes were also found. As far as we know, we have detected for the first time ARGs encoding carbapenemases, such as blaAIM-1, blaCAM-1, blaGIM-2, and blaHMB-1, in Latin America. Thus, our results support the importance of metagenomics as a tool to track the colonization of food-producing animals and humans by antimicrobial-resistant bacteria. In addition, a network surveillance system called GUARANI, created for this study, is ready to be expanded and to collect additional data.


Asunto(s)
Antiinfecciosos , Farmacorresistencia Bacteriana , Humanos , Porcinos , Bovinos , Animales , Farmacorresistencia Bacteriana/genética , Brasil , Metagenómica/métodos , Bacterias , Antibacterianos/farmacología , Aves de Corral , Genes Bacterianos
19.
Microb Drug Resist ; 28(8): 849-852, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35833887

RESUMEN

Pseudomonas aeruginosa is an opportunist pathogen usually associated with life threatening infections and exhibits a set of intrinsic and acquired antimicrobial mechanisms. Although resistance to penicillins-like compounds is commonly associated with the chromosomal Pseudomonas-derived cephalosporinases ß-lactamase, the real contribution of OXA-50, a second chromosomally encoded ß-lactamase, remains unclear. In this study, we characterized the biochemical properties of OXA-50, OXA-488, and OXA-494. Both oxacilinases differ from OXA-50 in two amino acids each. The blaOXA-50, blaOXA-488, and blaOXA-494 were cloned into pET26b+ that was transformed into Escherichia coli DH5α strain, expressed in E. coli BL21 strain, and then purified for obtaining the hydrolytic parameters. Benzylpenicillin was the preferential substrate instead of oxacillin. Besides, OXA-488 showed a threefold increase in catalytic efficiency for benzylpenicillin, and it was twofold more efficient in hydrolyzing imipenem, compared with OXA-50, although such carbapenemase activity was considered weak. In addition, OXA-488 and OXA-494 showed an increased affinity for penicillins, which contributed to the increased catalytic efficiency against ampicillin, especially OXA-488. Chromosomally encoded resistance mechanisms are usually overshadowed by acquired mechanisms. However, understanding their real contribution is essential to comprehend the versatile profiles verified in P. aeruginosa isolates. Such information can help to choose the best therapy in a scenario of limited options.


Asunto(s)
Pseudomonas aeruginosa , beta-Lactamas , Antibacterianos/farmacología , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Hidrólisis , Cinética , Pruebas de Sensibilidad Microbiana , Oxacilina , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , beta-Lactamasas/metabolismo , beta-Lactamas/metabolismo , beta-Lactamas/farmacología
20.
Sci Data ; 9(1): 366, 2022 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-35752638

RESUMEN

The One Health concept is a global strategy to study the relationship between human and animal health and the transfer of pathogenic and non-pathogenic species between these systems. However, to the best of our knowledge, no data based on One Health genome-centric metagenomics are available in public repositories. Here, we present a dataset based on a pilot-study of 2,915 metagenome-assembled genomes (MAGs) of 107 samples from the human (N = 34), cattle (N = 28), swine (N = 15) and poultry (N = 30) gut microbiomes. Samples were collected from the five Brazilian geographical regions. Of the draft genomes, 1,273 were high-quality drafts (≥90% of completeness and ≤5% of contamination), and 1,642 were medium-quality drafts (≥50% of completeness and ≤10% of contamination). Taxonomic predictions were based on the alignment and concatenation of single-marker genes, and the most representative phyla were Bacteroidota, Firmicutes, and Proteobacteria. Many of these species represent potential pathogens that have already been described or potential new families, genera, and species with potential biotechnological applications. Analyses of this dataset will highlight discoveries about the ecology and functional role of pathogens and uncultivated Archaea and Bacteria from food-producing animals and humans. Furthermore, it also represents an opportunity to describe new species from underrepresented taxonomic groups.


Asunto(s)
Microbioma Gastrointestinal , Metagenoma , Animales , Archaea/genética , Bacterias/genética , Bovinos , Humanos , Metagenómica , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...