Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
1.
Clin Pharmacol Ther ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38738484

RESUMEN

Precision dosing strategies require accounting for between-patient variability in pharmacokinetics (PK), affecting drug exposure, and in pharmacodynamics (PD), affecting response achieved at the same drug concentration at the site of action. Although liquid biopsy for assessing different levels of molecular drug targets has yet to be established, individual characterization of drug elimination pathways using liquid biopsy has recently been demonstrated. The feasibility of applying this approach in conjunction with modeling tools to guide individual dosing remains unexplored. In this study, we aimed to individualize physiologically-based pharmacokinetic (PBPK) models based on liquid biopsy measurements in plasma from 25 donors with different grades of renal function who were previously administered oral midazolam as part of a microdose cocktail. Virtual twin models were constructed based on demographics, renal function, and hepatic expression of relevant pharmacokinetic pathways projected from liquid biopsy output. Simulated exposure (AUC) to midazolam was in agreement with observed data (AFE = 1.38, AAFE = 1.78). Simulated AUC variability with three dosing approaches indicated higher variability with uniform dosing (14-fold) and stratified dosing (13-fold) compared with individualized dosing informed by liquid biopsy (fivefold). Further, exosome screening revealed mRNA expression of 532 targets relevant to drug metabolism and disposition (169 enzymes and 361 transporters). Data related to these targets can be used to further individualize PBPK models for pathways relevant to PK of other drugs. This study provides additional verification of liquid biopsy-informed PBPK modeling approaches, necessary to advance strategies that seek to achieve precise dosing from the start of treatment.

2.
CPT Pharmacometrics Syst Pharmacol ; 13(4): 524-543, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38356302

RESUMEN

Organ-on-a-chip (OoC) systems are a promising new class of in vitro devices that can combine various tissues, cultured in different compartments, linked by media flow. The properties of these novel in vitro systems linked to increased physiological relevance of culture conditions may lead to more in vivo-relevant cell phenotypes, enabling better in vitro pharmacology and toxicology assessment. Improved cell activities combined with longer lasting cultures offer opportunities to improve the characterization of absorption, distribution, metabolism, and excretion (ADME) processes, potentially leading to more accurate prediction of human pharmacokinetics (PKs). The inclusion of barrier tissue elements and metabolically competent tissue types results in complex concentration-time profiles (in vitro PK) for test drugs and their metabolites that require appropriate mathematical modeling of in vitro data for parameter estimation. In particular, modeling is critical to estimate in vitro ADME parameters when multiple different tissues are combined in a single device. Therefore, sophisticated in silico data analysis and a priori experimental design are highly recommended for OoC experiments in a manner not needed with standard ADME screening. The design of the experiment should be optimized based on an investigation of the structural characteristics of the in vitro system, the ADME features of the test compound and any available knowledge of cell phenotypes. This tutorial aims to provide such a modeling framework to inform experimental design and refine parameter estimation in a Gut-Liver OoC (the most studied multi-organ systems to predict the oral drug PKs) to improve translatability of data generated in such complex cellular systems.


Asunto(s)
Sistemas Microfisiológicos , Proyectos de Investigación , Humanos , Hígado/metabolismo , Simulación por Computador
3.
J Pharm Sci ; 113(6): 1664-1673, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38417790

RESUMEN

Accounting for variability in plasma protein binding of drugs is an essential input to physiologically-based pharmacokinetic (PBPK) models of special populations. Prediction of fraction unbound in plasma (fu) in such populations typically considers changes in plasma protein concentration while assuming that the binding affinity remains unchanged. A good correlation between predicted vs observed fu data reported for various drugs in a given special population is often used as a justification for such predictive methods. However, none of these analyses evaluated the prediction of the fold-change in fu in special populations relative to the reference population. This would be a more appropriate assessment of the predictivity, analogous to drug-drug interactions. In this study, predictive performance of the single protein binding model was assessed by predicting fu for alpha-1-acid glycoprotein and albumin bound drugs in hepatic impairment, renal impairment, paediatric, elderly, patients with inflammatory disease, and in different ethnic groups for a dataset of >200 drugs. For albumin models, the concordance correlation coefficients for predicted fu were >0.90 for 16 out of 17 populations with sub-groups, indicating strong agreement between predicted and observed values. In contrast, concordance correlation coefficients for predicted fold-change in fu for the same dataset were <0.38 for all populations and sub-groups. Trends were similar for alpha-1-acid glycoprotein models. Accordingly, the predictions of fu solely based on changes in protein concentrations in plasma cannot explain the observed values in some special populations. We recommend further consideration of the impact of changes in special populations to endogenous substances that competitively bind to plasma proteins, and changes in albumin structure due to posttranslational modifications. PBPK models of special populations for highly bound drugs should preferably use measured fu data to ensure reliable prediction of drug exposure or compare predicted unbound drug exposure between populations knowing that these will not be sensitive to changes in fu.


Asunto(s)
Proteínas Sanguíneas , Modelos Biológicos , Unión Proteica , Humanos , Proteínas Sanguíneas/metabolismo , Preparaciones Farmacéuticas/metabolismo , Preparaciones Farmacéuticas/sangre , Orosomucoide/metabolismo , Anciano , Niño , Farmacocinética
4.
Nat Rev Drug Discov ; 23(4): 255-280, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38267543

RESUMEN

The effect of membrane transporters on drug disposition, efficacy and safety is now well recognized. Since the initial publication from the International Transporter Consortium, significant progress has been made in understanding the roles and functions of transporters, as well as in the development of tools and models to assess and predict transporter-mediated activity, toxicity and drug-drug interactions (DDIs). Notable advances include an increased understanding of the effects of intrinsic and extrinsic factors on transporter activity, the application of physiologically based pharmacokinetic modelling in predicting transporter-mediated drug disposition, the identification of endogenous biomarkers to assess transporter-mediated DDIs and the determination of the cryogenic electron microscopy structures of SLC and ABC transporters. This article provides an overview of these key developments, highlighting unanswered questions, regulatory considerations and future directions.


Asunto(s)
Proteínas de Transporte de Membrana , Medicina de Precisión , Humanos , Interacciones Farmacológicas , Desarrollo de Medicamentos
5.
Drug Metab Dispos ; 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38050097

RESUMEN

Drug-drug interaction (DDI) assessment of therapeutic peptides is an evolving area. The industry generally follows DDI guidelines for small molecules, but the translation of data generated with commonly used in vitro systems to in vivo is sparse. In the current study, we investigated the ability of advanced human hepatocyte in vitro systems namely HepatoPac, spheroids, and Liver-on-a-chip to assess potential changes in regulation of CYP1A2, CYP2B6, CYP3A4, SLCO1B1 and ABCC2 in the presence of selected therapeutic peptides, proteins, and small molecules. The peptide NN1177, a glucagon and GLP-1 receptor co-agonist, did not suppress mRNA expression or activity of CYP1A2, CYP2B6, and CYP3A4 in HepatoPac, spheroids, or Liver-on-a-chip; these findings were in contrast to the data obtained in sandwich cultured hepatocytes. No effect of NN1177 on SLCO1B1 and ABCC2 mRNA was observed in any of the complex systems. The induction magnitude differed across the systems (e.g., rifampicin induction of CYP3A4 mRNA ranged from 2.8-fold in spheroids to 81.2-fold in Liver-on-a-chip). Small molecules, obeticholic acid and abemaciclib, showed varying responses in HepatoPac, spheroids and Liver-on-a-chip, indicating a need for EC50 determinations to fully assess translatability data. HepatoPac, the most extensively investigated in this study (3 donors), showed high potential to investigate DDIs associated with CYP regulation by therapeutic peptides. Spheroids and Liver-on-a-chip were only assessed in one hepatocyte donor and further evaluations are required to confirm their potential. This study establishes an excellent foundation towards the establishment of more clinically-relevant in vitro tools for evaluation of potential DDIs with therapeutic peptides. Significance Statement At present, there are no guidelines for drug-drug interaction (DDI) assessment of therapeutic peptides. Existing in vitro methods recommended for assessing small molecule DDIs do not appear to translate well for peptide drugs, complicating drug development for these moieties. Here, we establish evidence that complex cellular systems have potential to be used as more clinically-relevant tools for the in vitro DDI evaluation of therapeutic peptides.

6.
Drug Metab Dispos ; 51(12): 1591-1606, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37751998

RESUMEN

Underestimation of aldehyde oxidase (AO)-mediated clearance by current in vitro assays leads to uncertainty in human dose projections, thereby reducing the likelihood of success in drug development. In the present study we first evaluated the current drug development practices for AO substrates. Next, the overall predictive performance of in vitro-in vivo extrapolation of unbound hepatic intrinsic clearance (CLint,u) and unbound hepatic intrinsic clearance by AO (CLint,u,AO) was assessed using a comprehensive literature database of in vitro (human cytosol/S9/hepatocytes) and in vivo (intravenous/oral) data collated for 22 AO substrates (total of 100 datapoints from multiple studies). Correction for unbound fraction in the incubation was done by experimental data or in silico predictions. The fraction metabolized by AO (fmAO) determined via in vitro/in vivo approaches was found to be highly variable. The geometric mean fold errors (gmfe) for scaled CLint,u (mL/min/kg) were 10.4 for human hepatocytes, 5.6 for human liver cytosols, and 5.0 for human liver S9, respectively. Application of these gmfe's as empirical scaling factors improved predictions (45%-57% within twofold of observed) compared with no correction (11%-27% within twofold), with the scaling factors qualified by leave-one-out cross-validation. A road map for quantitative translation was then proposed following a critical evaluation on the in vitro and clinical methodology to estimate in vivo fmAO In conclusion, the study provides the most robust system-specific empirical scaling factors to date as a pragmatic approach for the prediction of in vivo CLint,u,AO in the early stages of drug development. SIGNIFICANCE STATEMENT: Confidence remains low when predicting in vivo clearance of AO substrates using in vitro systems, leading to de-prioritization of AO substrates from the drug development pipeline to mitigate risk of unexpected and costly in vivo impact. The current study establishes a set of empirical scaling factors as a pragmatic tool to improve predictability of in vivo AO clearance. Developing clinical pharmacology strategies for AO substrates by utilizing mass balance/clinical drug-drug interaction data will help build confidence in fmAO.


Asunto(s)
Aldehído Oxidasa , Hígado , Humanos , Aldehído Oxidasa/metabolismo , Tasa de Depuración Metabólica , Hígado/metabolismo , Hepatocitos/metabolismo , Microsomas Hepáticos/metabolismo
7.
Clin Pharmacol Ther ; 114(6): 1243-1253, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37620246

RESUMEN

Monitoring endogenous biomarkers is increasingly used to evaluate transporter-mediated drug-drug interactions (DDIs) in early drug development and may be applied to elucidate changes in transporter activity in disease. 4-pyridoxic acid (PDA) has been identified as the most sensitive plasma endogenous biomarker of renal organic anion transporters (OAT1/3). Increase in PDA baseline concentrations was observed after administration of probenecid, a strong clinical inhibitor of OAT1/3 and also in patients with chronic kidney disease (CKD). The aim of this study was to develop and verify a physiologically-based pharmacokinetic (PBPK) model of PDA, to predict the magnitude of probenecid DDI and predict the CKD-related changes in PDA baseline. The PBPK model for PDA was first developed in healthy population, building on from previous population pharmacokinetic modeling, and incorporating a mechanistic kidney model to consider OAT1/3-mediated renal secretion. Probenecid PBPK model was adapted from the Simcyp database and re-verified to capture its dose-dependent pharmacokinetics (n = 9 studies). The PBPK model successfully predicted the PDA plasma concentrations, area under the curve, and renal clearance in healthy subjects at baseline and after single/multiple probenecid doses. Prospective simulations in severe CKD predicted successfully the increase in PDA plasma concentration relative to healthy (within 2-fold of observed data) after accounting for 60% increase in fraction unbound in plasma and additional 50% decline in OAT1/3 activity beyond the decrease in glomerular filtration rate. The verified PDA PBPK model supports future robust evaluation of OAT1/3 DDI in drug development and increases our confidence in predicting exposure and renal secretion in patients with CKD.


Asunto(s)
Ácido Piridóxico , Insuficiencia Renal Crónica , Humanos , Probenecid/farmacología , Insuficiencia Renal Crónica/tratamiento farmacológico , Riñón , Interacciones Farmacológicas , Biomarcadores , Modelos Biológicos
8.
Clin Pharmacokinet ; 62(6): 891-904, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37148485

RESUMEN

BACKGROUND AND OBJECTIVE: Spinal muscular atrophy (SMA) is a progressive neuromuscular disease caused by insufficient levels of survival motor neuron (SMN) protein. Risdiplam (EvrysdiTM) increases SMN protein and is approved for the treatment of SMA. Risdiplam has high oral bioavailability and is primarily eliminated through hepatic metabolism by flavin-containing monooxygenase3 (FMO3) and cytochrome P450 (CYP) 3A, by 75% and 20%, respectively. While the FMO3 ontogeny is critical input data for the prediction of risdiplam pharmacokinetics (PK) in children, it was mostly studied in vitro, and robust in vivo FMO3 ontogeny is currently lacking. We derived in vivo FMO3 ontogeny by mechanistic population PK modelling of risdiplam and investigated its impact on drug-drug interactions in children. METHODS: Population and physiologically based PK (PPK and PBPK) modelling conducted during the development of risdiplam were integrated into a mechanistic PPK (Mech-PPK) model to estimate in vivo FMO3 ontogeny. A total of 10,205 risdiplam plasma concentration-time data from 525 subjects aged 2 months-61 years were included. Six different structural models were examined to describe the in vivo FMO3 ontogeny. Impact of the newly estimated FMO3 ontogeny on predictions of drug-drug interaction (DDI) in children was investigated by simulations for dual CYP3A-FMO3 substrates including risdiplam and theoretical substrates covering a range of metabolic fractions (fm) of CYP3A and FMO3 (fmCYP3A:fmFMO3 = 10%:90%, 50%:50%, 90%:10%). RESULTS: All six models consistently predicted higher FMO3 expression/activity in children, reaching a maximum at the age of 2 years with an approximately threefold difference compared with adults. Different trajectories of FMO3 ontogeny in infants < 4 months of age were predicted by the six models, likely due to limited observations for this age range. Use of this  in vivo FMO3 ontogeny function improved prediction of risdiplam PK in children compared to in vitro FMO3 ontogeny functions. The simulations of theoretical dual CYP3A-FMO3 substrates predicted comparable or decreased CYP3A-victim DDI propensity in children compared to adults across the range of fm values. Refinement of FMO3 ontogeny in the risdiplam model had no impact on the previously predicted low CYP3A-victim or -perpetrator DDI risk of risdiplam in children. CONCLUSION: Mech-PPK modelling successfully estimated in vivo FMO3 ontogeny from risdiplam data collected from 525 subjects aged 2 months-61 years. To our knowledge, this is the first investigation of in vivo FMO3 ontogeny by population approach using comprehensive data covering a wide age range. Derivation of a robust in vivo FMO3 ontogeny function has significant implications on the prospective prediction of PK and DDI in children for other FMO3 substrates in the future, as illustrated in the current study for FMO3 and/or dual CYP3A-FMO3 substrates. CLINICAL TRIAL REGISTRY NUMBERS: NCT02633709, NCT03032172, NCT02908685, NCT02913482, NCT03988907.


Asunto(s)
Citocromo P-450 CYP3A , Modelos Biológicos , Adulto , Lactante , Humanos , Niño , Citocromo P-450 CYP3A/metabolismo , Estudios Prospectivos , Interacciones Farmacológicas
9.
Pharmaceutics ; 15(3)2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36986758

RESUMEN

Gadoxetate, a magnetic resonance imaging (MRI) contrast agent, is a substrate of organic-anion-transporting polypeptide 1B1 and multidrug resistance-associated protein 2. Six drugs, with varying degrees of transporter inhibition, were used to assess gadoxetate dynamic contrast enhanced MRI biomarkers for transporter inhibition in rats. Prospective prediction of changes in gadoxetate systemic and liver AUC (AUCR), resulting from transporter modulation, were performed by physiologically-based pharmacokinetic (PBPK) modelling. A tracer-kinetic model was used to estimate rate constants for hepatic uptake (khe), and biliary excretion (kbh). The observed median fold-decreases in gadoxetate liver AUC were 3.8- and 1.5-fold for ciclosporin and rifampicin, respectively. Ketoconazole unexpectedly decreased systemic and liver gadoxetate AUCs; the remaining drugs investigated (asunaprevir, bosentan, and pioglitazone) caused marginal changes. Ciclosporin decreased gadoxetate khe and kbh by 3.78 and 0.09 mL/min/mL, while decreases for rifampicin were 7.20 and 0.07 mL/min/mL, respectively. The relative decrease in khe (e.g., 96% for ciclosporin) was similar to PBPK-predicted inhibition of uptake (97-98%). PBPK modelling correctly predicted changes in gadoxetate systemic AUCR, whereas underprediction of decreases in liver AUCs was evident. The current study illustrates the modelling framework and integration of liver imaging data, PBPK, and tracer-kinetic models for prospective quantification of hepatic transporter-mediated DDI in humans.

10.
Lab Chip ; 22(15): 2853-2868, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35833849

RESUMEN

Microphysiological systems (MPS) consisting of multiple linked organ-on-a-chip (OoC) components are highly promising tools with potential to provide more relevant in vitro to in vivo translation of drug disposition, efficacy and toxicity. A gut-liver OoC system was employed with Caco2 cells in co-culture with HT29 cells in the intestinal compartment and single donor primary hepatocytes in the hepatic compartment for the investigation of intestinal permeability, metabolism (intestinal and hepatic) and potential interplay of those processes. The prodrug mycophenolate mofetil was tested for quantitative evaluation of the gut-liver OoC due to the contribution of both gut and liver in its metabolism. Conversion of mycophenolate mofetil to active drug mycophenolic acid and further metabolism to a glucuronide metabolite was assessed over time in the gut apical, gut basolateral and liver compartments. Mechanistic modelling of experimental data was performed to estimate clearance and permeability parameters for the prodrug, active drug and glucuronide metabolite. Integration of gut-liver OoC data with in silico modelling allowed investigation of the complex combination of intestinal and hepatic processes, which is not possible with standard single tissue in vitro systems. A comprehensive evaluation of the mechanistic model, including structural model and parameter identifiability and global sensitivity analysis, enabled a robust experimental design and estimation of in vitro pharmacokinetic parameters. We propose that similar methodologies may be applied to other multi-organ microphysiological systems used for drug metabolism studies or wherever quantitative knowledge of changing drug concentration with time enables better understanding of biological effect.


Asunto(s)
Ácido Micofenólico , Profármacos , Células CACO-2 , Glucurónidos/metabolismo , Humanos , Dispositivos Laboratorio en un Chip , Hígado/metabolismo , Ácido Micofenólico/farmacocinética , Proyectos de Investigación
11.
Clin Pharmacol Ther ; 112(3): 615-626, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35652251

RESUMEN

Coproporphyrin I (CPI) is an endogenous biomarker of organic anion transporting polypeptide 1B transporter (OATP1B). CPI plasma baseline was reported to increase with severity of chronic kidney disease (CKD). Further, ratio of CPI area under the plasma concentration-time curve (AUCR) in the presence/absence of OATP1B inhibitor rifampin was higher in patients with CKD compared with healthy participants, in contrast to pitavastatin (a clinical OATP1B probe). This study investigated mechanism(s) contributing to altered CPI baseline in patients with CKD by extending a previously developed physiologically-based pharmacokinetic (PBPK) model to this patient population. CKD-related covariates were evaluated in a stepwise manner on CPI fraction unbound in plasma (fu,p ), OATP1B-mediated hepatic uptake clearance (CLactive ), renal clearance (CLR ), and endogenous synthesis (ksyn ). The CPI model successfully recovered increased baseline and rifampin-mediated AUCR in patients with CKD by accounting for the following disease-related changes: 13% increase in fu,p , 29% and 39% decrease in CLactive in mild and moderate to severe CKD, respectively, decrease in CLR proportional to decline in glomerular filtration rate, and 27% decrease in ksyn in severe CKD. Almost complete decline in CPI renal elimination in severe CKD increased its fraction transported by OATP1B, rationalizing differences in the CPI-rifampin interaction observed between healthy participants and patients with CKD. In conclusion, mechanistic modeling performed here supports CKD-related decrease in OATP1B function to inform prospective PBPK modeling of OATP1B-mediated drug-drug interaction in these patients. Monitoring of CPI allows detection of CKD-drug interaction risk for OATP1B drugs with combined hepatic and renal elimination which may be underestimated by extrapolating the interaction risk based on pitavastatin data in healthy participants.


Asunto(s)
Coproporfirinas , Transportadores de Anión Orgánico , Insuficiencia Renal Crónica , Biomarcadores , Coproporfirinas/análisis , Interacciones Farmacológicas , Humanos , Transportador 1 de Anión Orgánico Específico del Hígado , Transportadores de Anión Orgánico/metabolismo , Estudios Prospectivos , Insuficiencia Renal Crónica/diagnóstico , Rifampin/farmacología
12.
Clin Pharmacol Ther ; 112(3): 643-652, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35569107

RESUMEN

There is growing evidence that active tubular secretory clearance (CLs ) may not decline proportionally with the glomerular filtration rate (GFR) in chronic kidney disease (CKD), leading to the overestimation of renal clearance (CLr ) when using solely GFR to approximate disease effect on renal elimination. The clinical pharmacokinetic data of 33 renally secreted OAT1/3 substrates were collated to investigate the impact of mild, moderate, and severe CKD on CLr , tubular secretion and protein binding (fu,p ). The fu,p of the collated substrates ranged from 0.0026 to 1.0 in healthy populations; observed CKD-related increase in the fu,p (up to 2.7-fold) of 8 highly bound substrates (fu,p ≤ 0.2) was accounted for in the analysis. Use of prediction equation based on disease-related changes in albumin resulted in underprediction of the CKD-related increase in fu,p of highly bound substrates, highlighting the necessity to measure protein binding in severe CKD. The critical analysis of clinical data for 33 OAT1/3 probes established that decrease in OAT1/3 activity proportional to the changes in GFR was insufficient to recapitulate effects of severe CKD on unbound tubular secretion clearance. OAT1/3-mediated CLs was estimated to decline by an additional 50% relative to the GFR decline in severe CKD, whereas change in active secretion in mild and moderate CKD was proportional to GFR. Consideration of this additional 50% decline in OAT1/3-mediated CLs is recommended for physiologically-based pharmacokinetic models and dose adjustment of OAT1/3 substrates in severe CKD, especially for substrates with high contribution of the active secretion to CLr .


Asunto(s)
Transportadores de Anión Orgánico , Insuficiencia Renal Crónica , Tasa de Filtración Glomerular , Humanos , Riñón/metabolismo , Transportadores de Anión Orgánico/metabolismo , Eliminación Renal , Insuficiencia Renal Crónica/metabolismo
13.
Clin Pharmacol Ther ; 112(3): 501-526, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35561140

RESUMEN

The role of membrane transporters on pharmacokinetics (PKs), drug-drug interactions (DDIs), pharmacodynamics (PDs), and toxicity of drugs has been broadly recognized. However, our knowledge of modulation of transporter expression and/or function in the diseased patient population or specific populations, such as pediatrics or pregnancy, is still emerging. This white paper highlights recent advances in studying the changes in transporter expression and activity in various diseases (i.e., renal and hepatic impairment and cancer) and some specific populations (i.e., pediatrics and pregnancy) with the focus on clinical implications. Proposed alterations in transporter abundance and/or activity in diseased and specific populations are based on (i) quantitative transporter proteomic data and relative abundance in specific populations vs. healthy adults, (ii) clinical PKs, and emerging transporter biomarker and/or pharmacogenomic data, and (iii) physiologically-based pharmacokinetic modeling and simulation. The potential for altered PK, PD, and toxicity in these populations needs to be considered for drugs and their active metabolites in which transporter-mediated uptake/efflux is a major contributor to their absorption, distribution, and elimination pathways and/or associated DDI risk. In addition to best practices, this white paper discusses current challenges and knowledge gaps to study and quantitatively predict the effects of modulation in transporter activity in these populations, together with the perspectives from the International Transporter Consortium (ITC) on future directions.


Asunto(s)
Modelos Biológicos , Proteómica , Adulto , Transporte Biológico , Niño , Interacciones Farmacológicas , Humanos , Proteínas de Transporte de Membrana/metabolismo
14.
Lab Chip ; 22(6): 1187-1205, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35107462

RESUMEN

Microphysiological systems (MPS) are complex and more physiologically realistic cellular in vitro tools that aim to provide more relevant human in vitro data for quantitative prediction of clinical pharmacokinetics while also reducing the need for animal testing. The PhysioMimix liver-on-a-chip integrates medium flow with hepatocyte culture and has the potential to be adopted for in vitro studies investigating the hepatic disposition characteristics of drug candidates. The current study focusses on liver-on-a-chip system exploration for multiple drug metabolism applications. Characterization of cytochrome P450 (CYP), UDP-glucuronosyl transferase (UGT) and aldehyde oxidase (AO) activities was performed using 15 drugs and in vitro to in vivo extrapolation (IVIVE) was assessed for 12 of them. Next, the utility of the liver-on-a-chip for estimation of the fraction metabolized (fm) via specific biotransformation pathways of quinidine and diclofenac was established. Finally, the metabolite identification opportunities were also explored using efavirenz as an example drug with complex primary and secondary metabolism involving a combination of CYP, UGT and sulfotransferase enzymes. A key aspect of these investigations was the application of mathematical modelling for improved parameter calculation. Such approaches will be required for quantitative assessment of metabolism and/or transporter processes in systems where medium flow and system compartments result in non-homogeneous drug concentrations. In particular, modelling was used to explore the effect of evaporation from the medium and it was found that the intrinsic clearance (CLint) might be underestimated by up to 40% for low clearance compounds if evaporation is not accounted for. Modelling of liver-on-a-chip in vitro data also enhanced the approach to fm estimation allowing objective assessment of metabolism models of different complexity. The resultant diclofenac fm,UGT of 0.64 was highly comparable with values reported previously in the literature. The current study demonstrates the integration of mathematical modelling with experimental liver-on-a-chip studies and illustrates how this approach supports generation of high quality of data from complex in vitro cellular systems.


Asunto(s)
Diclofenaco , Dispositivos Laboratorio en un Chip , Animales , Sistema Enzimático del Citocromo P-450/metabolismo , Diclofenaco/metabolismo , Glucuronosiltransferasa/metabolismo , Hepatocitos/metabolismo , Hígado , Tasa de Depuración Metabólica/fisiología , Modelos Biológicos
16.
AAPS J ; 24(1): 13, 2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34907479

RESUMEN

Dosing guidance is often lacking for chronic kidney disease (CKD) due to exclusion of such patients from pivotal clinical trials. Physiologically based pharmacokinetic (PBPK) modelling supports model-informed dosing when clinical data are lacking, but application of these approaches to patients with impaired renal function is not yet at full maturity. In the current study, a ganciclovir PBPK model was developed for patients with normal renal function and extended to CKD population. CKD-related changes in tubular secretion were explored in the mechanistic kidney model and implemented either as proportional or non-proportional decline relative to GFR. Crystalluria risk was evaluated in different clinical settings (old age, severe CKD and low fluid intake) by simulating ganciclovir medullary collecting duct (MCD) concentrations. The ganciclovir PBPK model captured observed changes in systemic pharmacokinetic endpoints in mild-to-severe CKD; these trends were evident irrespective of assumed pathophysiological mechanism of altered active tubular secretion in the model. Minimal difference in simulated ganciclovir MCD concentrations was noted between young adult and geriatric populations with normal renal function and urine flow (1 mL/min), with lower concentrations predicted for severe CKD patients. High crystalluria risk was identified at reduced urine flow (0.1 mL/min) as simulated ganciclovir MCD concentrations exceeded its solubility (2.6-6 mg/mL), irrespective of underlying renal function. The analysis highlighted the importance of appropriate distribution of virtual subjects' systems data in CKD populations. The ganciclovir PBPK model illustrates the ability of this translational tool to explore individual and combined effects of age, urine flow, and renal impairment on local drug renal exposure.


Asunto(s)
Ganciclovir , Insuficiencia Renal , Anciano , Simulación por Computador , Humanos , Riñón , Modelos Biológicos , Adulto Joven
17.
Clin Pharmacol Ther ; 110(6): 1547-1557, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34347881

RESUMEN

Risdiplam (Evrysdi) improves motor neuron function in patients with spinal muscular atrophy (SMA) and has been approved for the treatment of patients ≥2 months old. Risdiplam exhibits time-dependent inhibition of cytochrome P450 (CYP) 3A in vitro. While many pediatric patients receive risdiplam, a drug-drug interaction (DDI) study in pediatric patients with SMA was not feasible. Therefore, a novel physiologically-based pharmacokinetic (PBPK) model-based strategy was proposed to extrapolate DDI risk from healthy adults to children with SMA in an iterative manner. A clinical DDI study was performed in healthy adults at relevant risdiplam exposures observed in children. Risdiplam caused an 1.11-fold increase in the ratio of midazolam area under the curve with and without risdiplam (AUCR)), suggesting an 18-fold lower in vivo CYP3A inactivation constant compared with the in vitro value. A pediatric PBPK model for risdiplam was validated with independent data and combined with a validated midazolam pediatric PBPK model to extrapolate DDI from adults to pediatric patients with SMA. The impact of selected intestinal and hepatic CYP3A ontogenies on the DDI susceptibility in children relative to adults was investigated. The PBPK analysis suggests that primary CYP3A inhibition by risdiplam occurs in the intestine rather than the liver. The PBPK-predicted risdiplam CYP3A inhibition risk in pediatric patients with SMA aged 2 months-18 years was negligible (midazolam AUCR of 1.09-1.18) and included in the US prescribing information of risdiplam. Comprehensive evaluation of the sensitivity of predicted CYP3A DDI on selected intestinal and hepatic CYP3A ontogeny functions, together with PBPK model-based strategy proposed here, aim to guide and facilitate DDI extrapolations in pediatric populations.


Asunto(s)
Compuestos Azo/uso terapéutico , Inhibidores del Citocromo P-450 CYP3A/uso terapéutico , Interacciones Farmacológicas/fisiología , Modelos Biológicos , Atrofia Muscular Espinal/tratamiento farmacológico , Fármacos Neuromusculares/uso terapéutico , Pirimidinas/uso terapéutico , Adolescente , Adulto , Compuestos Azo/farmacocinética , Niño , Preescolar , Inhibidores del Citocromo P-450 CYP3A/farmacocinética , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Midazolam/farmacocinética , Midazolam/uso terapéutico , Atrofia Muscular Espinal/metabolismo , Fármacos Neuromusculares/farmacocinética , Pirimidinas/farmacocinética , Adulto Joven
18.
Clin Pharmacol Ther ; 110(5): 1389-1400, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34390491

RESUMEN

The applications of translational modeling of local drug concentrations in various organs had a sharp increase over the last decade. These are part of the model-informed drug development initiative, adopted by the pharmaceutical industry and promoted by drug regulatory agencies. With respect to the kidney, the models serve as a bridge for understanding animal vs. human observations related to renal drug disposition and any consequential adverse effects. However, quantitative data on key drug-metabolizing enzymes and transporters relevant for predicting renal drug disposition are limited. Using targeted and global quantitative proteomics, we determined the abundance of multiple enzymes and transporters in 20 human kidney cortex samples. Nine enzymes and 22 transporters were quantified (8 for the first time in the kidneys). In addition, > 4,000 proteins were identified and used to form an open database. CYP2B6, CYP3A5, and CYP4F2 showed comparable, but generally low expression, whereas UGT1A9 and UGT2B7 levels were the highest. Significant correlation between abundance and activity (measured by mycophenolic acid clearance) was observed for UGT1A9 (Rs = 0.65, P = 0.004) and UGT2B7 (Rs = 0.70, P = 0.023). Expression of P-gp ≈ MATE-1 and OATP4C1 transporters were high. Strong intercorrelations were observed between several transporters (P-gp/MRP4, MRP2/OAT3, and OAT3/OAT4); no correlation in expression was apparent for functionally related transporters (OCT2/MATEs). This study extends our knowledge of pharmacologically relevant proteins in the kidney cortex, with implications on more prudent use of mechanistic kidney models under the general framework of quantitative systems pharmacology and toxicology.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Corteza Renal/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Modelos Biológicos , Proteómica/métodos , Sistema Enzimático del Citocromo P-450/genética , Bases de Datos Factuales , Glucuronosiltransferasa/genética , Glucuronosiltransferasa/metabolismo , Humanos , Riñón/metabolismo , Cinética , Proteínas de Transporte de Membrana/genética , UDP Glucuronosiltransferasa 1A9
19.
Eur J Pharm Sci ; 165: 105932, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34260894

RESUMEN

BACKGROUND: Dabigatran etexilate (DABE) has been suggested as a clinical probe for intestinal P-glycoprotein (P-gp)-mediated drug-drug interaction (DDI) studies and, as an alternative to digoxin. Clinical DDI data with various P-gp inhibitors demonstrated a dose-dependent inhibition of P-gp with DABE. The aims of this study were to develop a joint DABE (prodrug)-dabigatran reduced physiologically-based-pharmacokinetic (PBPK) model and to evaluate its ability to predict differences in P-gp DDI magnitude between a microdose and a therapeutic dose of DABE. METHODS: A joint DABE-dabigatran PBPK model was developed with a mechanistic intestinal model accounting for the regional P-gp distribution in the gastrointestinal tract. Model input parameters were estimated using DABE and dabigatran pharmacokinetic (PK) clinical data obtained after administration of DABE alone or with a strong P-gp inhibitor, itraconazole, and over a wide range of DABE doses (from 375 µg to 400 mg). Subsequently, the model was used to predict extent of DDI with additional P-gp inhibitors and with different DABE doses. RESULTS: The reduced DABE-dabigatran PBPK model successfully described plasma concentrations of both prodrug and metabolite following administration of DABE at different dose levels and when co-administered with itraconazole. The model was able to capture the dose dependency in P-gp mediated DDI. Predicted magnitude of itraconazole P-gp DDI was higher at the microdose (predicted vs. observed median fold-increase in AUC+inh/AUCcontrol (min-max) = 5.88 (4.29-7.93) vs. 6.92 (4.96-9.66) ) compared to the therapeutic dose (predicted median fold-increase in AUC+inh/AUCcontrol = 3.48 (2.37-4.84) ). In addition, the reduced DABE-dabigatran PBPK model predicted successfully the extent of DDI with verapamil and clarithromycin as P-gp inhibitors. Model-based simulations of dose staggering predicted the maximum inhibition of P-gp when DABE microdose was concomitantly administered with itraconazole solution; simulations also highlighted dosing intervals required to minimise the DDI risk depending on the DABE dose administered (microdose vs. therapeutic). CONCLUSIONS: This study provides a modelling framework for the evaluation of P-gp inhibitory potential of new molecular entities using DABE as a clinical probe. Simulations of dose staggering and regional differences in the extent of intestinal P-gp inhibition for DABE microdose and therapeutic dose provide model-based guidance for design of prospective clinical P-gp DDI studies.


Asunto(s)
Dabigatrán , Preparaciones Farmacéuticas , Digoxina , Interacciones Farmacológicas , Humanos , Modelos Biológicos , Estudios Prospectivos
20.
Mol Pharm ; 18(8): 2997-3009, 2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-34283621

RESUMEN

Physiologically based pharmacokinetic (PBPK) models are increasingly used in drug development to simulate changes in both systemic and tissue exposures that arise as a result of changes in enzyme and/or transporter activity. Verification of these model-based simulations of tissue exposure is challenging in the case of transporter-mediated drug-drug interactions (tDDI), in particular as these may lead to differential effects on substrate exposure in plasma and tissues/organs of interest. Gadoxetate, a promising magnetic resonance imaging (MRI) contrast agent, is a substrate of organic-anion-transporting polypeptide 1B1 (OATP1B1) and multidrug resistance-associated protein 2 (MRP2). In this study, we developed a gadoxetate PBPK model and explored the use of liver-imaging data to achieve and refine in vitro-in vivo extrapolation (IVIVE) of gadoxetate hepatic transporter kinetic data. In addition, PBPK modeling was used to investigate gadoxetate hepatic tDDI with rifampicin i.v. 10 mg/kg. In vivo dynamic contrast-enhanced (DCE) MRI data of gadoxetate in rat blood, spleen, and liver were used in this analysis. Gadoxetate in vitro uptake kinetic data were generated in plated rat hepatocytes. Mean (%CV) in vitro hepatocyte uptake unbound Michaelis-Menten constant (Km,u) of gadoxetate was 106 µM (17%) (n = 4 rats), and active saturable uptake accounted for 94% of total uptake into hepatocytes. PBPK-IVIVE of these data (bottom-up approach) captured reasonably systemic exposure, but underestimated the in vivo gadoxetate DCE-MRI profiles and elimination from the liver. Therefore, in vivo rat DCE-MRI liver data were subsequently used to refine gadoxetate transporter kinetic parameters in the PBPK model (top-down approach). Active uptake into the hepatocytes refined by the liver-imaging data was one order of magnitude higher than the one predicted by the IVIVE approach. Finally, the PBPK model was fitted to the gadoxetate DCE-MRI data (blood, spleen, and liver) obtained with and without coadministered rifampicin. Rifampicin was estimated to inhibit active uptake transport of gadoxetate into the liver by 96%. The current analysis highlighted the importance of gadoxetate liver data for PBPK model refinement, which was not feasible when using the blood data alone, as is common in PBPK modeling applications. The results of our study demonstrate the utility of organ-imaging data in evaluating and refining PBPK transporter IVIVE to support the subsequent model use for quantitative evaluation of hepatic tDDI.


Asunto(s)
Medios de Contraste/farmacocinética , Gadolinio DTPA/farmacocinética , Hígado/diagnóstico por imagen , Hígado/metabolismo , Imagen por Resonancia Magnética/métodos , Rifampin/farmacocinética , Animales , Transporte Biológico Activo/efectos de los fármacos , Biomarcadores/metabolismo , Células Cultivadas , Medios de Contraste/administración & dosificación , Medios de Contraste/metabolismo , Interacciones Farmacológicas , Gadolinio DTPA/administración & dosificación , Gadolinio DTPA/metabolismo , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Masculino , Modelos Animales , Transportadores de Anión Orgánico/antagonistas & inhibidores , Transportadores de Anión Orgánico/metabolismo , Ratas , Rifampin/administración & dosificación , Rifampin/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA