Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Res Sq ; 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38645156

RESUMEN

Background: Since 2015, malaria vector control on Bioko Island has relied heavily upon long-lasting insecticidal nets (LLIN) to complement other interventions. Despite significant resources utilised, however, achieving and maintaining high coverage has been elusive. Here, core LLIN indicators were used to assess and redefine distribution strategies. Methods: LLIN indicators were estimated for Bioko Island between 2015 and 2022 using a 1×1 km grid of areas. The way these indicators interacted was used to critically assess coverage targets. Particular attention was paid to spatial heterogeneity and to differences between urban Malabo, the capital, and the rural periphery. Results: LLIN coverage according to all indicators varied substantially across areas, decreased significantly soon after mass distribution campaigns (MDC) and, with few exceptions, remained consistently below the recommended target. Use was strongly correlated with population access, particularly in Malabo. After a change in strategy in Malabo from MDC to fixed distribution points, use-to-access showed significant improvement, indicating those who obtained their nets from these sources were more likely to keep them and use them. Moreover, their use rates were significantly higher than those of whom sourced their nets elsewhere. Conclusions: Striking a better balance between LLIN distribution efficiency and coverage represents a major challenge as LLIN retention and use rates remain low despite high access resulting from MDC. The cost benefit of fixed distribution points in Malabo was deemed significant, providing a viable alternative for guaranteeing access to LLINs to those who use them.

2.
Malar J ; 21(1): 328, 2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36376966

RESUMEN

BACKGROUND: In 2017, several new housing districts were constructed on Bioko Island, Equatorial Guinea. This case study assessed the impact construction projects had on mosquito larval habitats and the effectiveness of larval source management in reducing malaria vector density within the surrounding area. METHODS: Anopheline larval presence was assessed at 11 new construction sites by the proportion of larval habitats containing Anopheline pupae and late instar larval stages. Bacillus thuringiensis israelensis (Bti) larvicide was applied weekly to nine locations for 30 weeks, while two locations received no larvicide and acted as controls. Adult mosquito density was monitored via human landing collections in adjacent communities of six construction sites, including the two control sites. RESULTS: The sites that received Bti had significantly lower observation rates of both pupae (3.2% vs. 18.0%; p < 0.001) and late instar Anopheles spp. mosquitoes (14.1 vs. 43.6%; p < 0.001) compared to the two untreated sites. Anopheles spp. accounted for 67% of mosquitoes collected with human landing collections and were captured at significantly lower levels in communities adjacent to treated construction sites compared to untreated sites (p < 0.001), with an estimated 38% reduction in human biting rate (IRR: 0.62, 95% CI IRR: 0.55, 0.69). Seven months after the start of the study, untreated sites were treated due to ethical concerns given results from treatment sties, necessitating immediate Bti application. The following week, the number of habitats, the proportion of larval sites with Anopheles spp. pupae, late instars, and adult biting rates in adjacent communities to these sites all decreased to comparable levels across all sites. CONCLUSION: Findings suggest larval source management represents an effective intervention to suppress mosquito populations during infrastructure development. Incorporating larval source management into ongoing and planned construction initiatives represents an opportunity to fine tune vector control in response to anthropogenetic changes. Ideally, this should become standard practice in malaria-endemic regions in order to reduce viable mosquito habitats that are common by-products of construction.


Asunto(s)
Anopheles , Bacillus thuringiensis , Malaria , Animales , Humanos , Anopheles/fisiología , Malaria/epidemiología , Control de Mosquitos/métodos , Larva , Remodelación Urbana , Mosquitos Vectores , Pupa , Ecosistema
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...