Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Regen Med ; 10(4): 447-60, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-26022764

RESUMEN

AIM: Peripheral blood-derived endothelial cells (pBD-ECs) are an attractive tool for cell therapies and tissue engineering, but have been limited by their low isolation yield. We increase pBD-EC yield via administration of the chemokine receptor type 4 antagonist AMD3100, as well as via a diluted whole blood incubation (DWBI). MATERIALS & METHODS: Porcine pBD-ECs were isolated using AMD3100 and DWBI and tested for EC markers, acetylated LDL uptake, growth kinetics, metabolic activity, flow-mediated nitric oxide production and seeded onto titanium tubes implanted into vessels of pigs. RESULTS: DWBI increased the yield of porcine pBD-ECs 6.6-fold, and AMD3100 increased the yield 4.5-fold. AMD3100-mobilized ECs were phenotypically indistinguishable from nonmobilized ECs. In porcine implants, the cells expressed endothelial nitric oxide synthase, reduced thrombin-antithrombin complex systemically and prevented thrombosis. CONCLUSION: Administration of AMD3100 and the DWBI method both increase pBD-EC yield.


Asunto(s)
Trasplante de Células/métodos , Células Endoteliales/citología , Ingeniería de Tejidos/métodos , Animales , Bencilaminas , Separación Celular , Ciclamas , Células Endoteliales/efectos de los fármacos , Citometría de Flujo , Compuestos Heterocíclicos/administración & dosificación , Compuestos Heterocíclicos/farmacología , Modelos Animales , Reología/efectos de los fármacos , Estrés Mecánico , Sus scrofa , Trasplante Autólogo , Vena Cava Inferior/efectos de los fármacos , Vena Cava Inferior/fisiología
2.
J Vis Exp ; (59)2012 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-22297325

RESUMEN

The overall goal of this method is to describe a technique to subject adherent cells to laminar flow conditions and evaluate their response to well quantifiable fluid shear stresses. Our flow chamber design and flow circuit (Fig. 1) contains a transparent viewing region that enables testing of cell adhesion and imaging of cell morphology immediately before flow (Fig. 11A, B), at various time points during flow (Fig. 11C), and after flow (Fig. 11D). These experiments are illustrated with human umbilical cord blood-derived endothelial progenitor cells (EPCs) and porcine EPCs. This method is also applicable to other adherent cell types, e.g. smooth muscle cells (SMCs) or fibroblasts. The chamber and all parts of the circuit are easily sterilized with steam autoclaving. In contrast to other chambers, e.g. microfluidic chambers, large numbers of cells (> 1 million depending on cell size) can be recovered after the flow experiment under sterile conditions for cell culture or other experiments, e.g. DNA or RNA extraction, or immunohistochemistry (Fig. 11E), or scanning electron microscopy. The shear stress can be adjusted by varying the flow rate of the perfusate, the fluid viscosity, or the channel height and width. The latter can reduce fluid volume or cell needs while ensuring that one-dimensional flow is maintained. It is not necessary to measure chamber height between experiments, since the chamber height does not depend on the use of gaskets, which greatly increases the ease of multiple experiments. Furthermore, the circuit design easily enables the collection of perfusate samples for analysis and/or quantification of metabolites secreted by cells under fluid shear stress exposure, e.g. nitric oxide (Fig. 12).


Asunto(s)
Técnicas Citológicas/instrumentación , Células Endoteliales/citología , Células Madre/citología , Animales , Técnicas Citológicas/métodos , Fraccionamiento de Campo-Flujo/instrumentación , Fraccionamiento de Campo-Flujo/métodos , Humanos , Resistencia al Corte , Viscosidad
3.
J Vis Exp ; (55)2011 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-21931293

RESUMEN

Implantable cardiovascular devices are manufactured from artificial materials (e.g. titanium (Ti), expanded polytetrafluoroethylene), which pose the risk of thromboemboli formation. We have developed a method to line the inside surface of Ti tubes with autologous blood-derived human or porcine endothelial progenitor cells (EPCs). By implanting Ti tubes containing a confluent layer of porcine EPCs in the inferior vena cava (IVC) of pigs, we tested the improved biocompatibility of the cell-seeded surface in the prothrombotic environment of a large animal model and compared it to unmodified bare metal surfaces (Figure 1). This method can be used to endothelialize devices within minutes of implantation and test their antithrombotic function in vivo. Peripheral blood was obtained from 50 kg Yorkshire swine and its mononuclear cell fraction cultured to isolate EPCs. Ti tubes (9.4 mm ID) were pre-cut into three 4.5 cm longitudinal sections and reassembled with heat-shrink tubing. A seeding device was built, which allows for slow rotation of the Ti tubes. We performed a laparotomy on the pigs and externalized the intestine and urinary bladder. Sharp and blunt dissection was used to skeletonize the IVC from its bifurcation distal to the right renal artery proximal. The Ti tubes were then filled with fluorescently-labeled autologous EPC suspension and rotated at 10 RPH x 30 min to achieve uniform cell-coating. After administration of 100 USP/kg heparin, both ends of the IVC and a lumbar vein were clamped. A 4 cm veinotomy was performed and the device inserted and filled with phosphate-buffered saline. As the veinotomy was closed with a 4-0 Prolene running suture, one clamp was removed to de-air the IVC. At the end of the procedure, the fascia was approximated with 0-PDS (polydioxanone suture), the subcutaneous space closed with 2-0 Vicryl and the skin stapled closed. After 3 - 21 days, pigs were euthanized, the device explanted en-block and fixed. The Ti tubes were disassembled and the inner surfaces imaged with a fluorescent microscope. We found that the bare metal Ti tubes fully occluded whereas the EPC-seeded tubes remained patent. Further, we were able to demonstrate a confluent layer of EPCs on the inside blood-contacting surface. Concluding, our technology can be used to endothelialize Ti tubes within minutes of implantation with autologous EPCs to prevent thrombosis of the device. Our surgical method allows for testing the improved biocompatibility of such modified devices with minimal blood loss and EPC-seeded surface disruption.


Asunto(s)
Células Endoteliales/citología , Ensayo de Materiales/métodos , Prótesis e Implantes , Células Madre/citología , Tromboembolia/etiología , Titanio , Animales , Fenómenos Fisiológicos Cardiovasculares , Femenino , Porcinos
4.
Biomaterials ; 32(33): 8356-63, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21840592

RESUMEN

Titanium (Ti) is commonly utilized in many cardiovascular devices, e.g. as a component of Nitinol stents, intra- and extracorporeal mechanical circulatory assist devices, but is associated with the risk of thromboemboli formation. We propose to solve this problem by lining the Ti blood-contacting surfaces with autologous peripheral blood-derived late outgrowth endothelial progenitor cells (EPCs) after having previously demonstrated that these EPCs adhere to and grow on Ti under physiological shear stresses and functionally adapt to their environment under flow conditions ex vivo. Autologous fluorescently-labeled porcine EPCs were seeded at the point-of-care in the operating room onto Ti tubes for 30 min and implanted into the pro-thrombotic environment of the inferior vena cava of swine (n = 8). After 3 days, Ti tubes were explanted, disassembled, and the blood-contacting surface was imaged. A blinded analysis found all 4 cell-seeded implants to be free of clot, whereas 4 controls without EPCs were either entirely occluded or partially thrombosed. Pre-labeled EPCs had spread and were present on all 4 cell-seeded implants while no endothelial cells were observed on control implants. These results suggest that late outgrowth autologous EPCs represent a promising source of lining Ti implants to reduce thrombosis in vivo.


Asunto(s)
Prótesis Vascular/efectos adversos , Sangre , Modelos Animales de Enfermedad , Células Endoteliales/citología , Células Madre/citología , Trombosis/prevención & control , Animales , Citometría de Flujo , Humanos , Inmunohistoquímica , Porcinos , Trombosis/etiología , Titanio
5.
Biomaterials ; 32(1): 10-8, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20926131

RESUMEN

Implantable and extracorporeal cardiovascular devices are commonly made from titanium (Ti) (e.g. Ti-coated Nitinol stents and mechanical circulatory assist devices). Endothelializing the blood-contacting Ti surfaces of these devices would provide them with an antithrombogenic coating that mimics the native lining of blood vessels and the heart. We evaluated the viability and adherence of peripheral blood-derived porcine endothelial progenitor cells (EPCs), seeded onto thin Ti layers on glass slides under static conditions and after exposure to fluid shear stresses. EPCs attached and grew to confluence on Ti in serum-free medium, without preadsorption of proteins. After attachment to Ti for 15 min, less than 5% of the cells detached at a shear stress of 100 dyne / cm(2). Confluent monolayers of EPCs on smooth Ti surfaces (Rq of 10 nm), exposed to 15 or 100 dyne/cm(2) for 48 h, aligned and elongated in the direction of flow and produced nitric oxide dependent on the level of shear stress. EPC-coated Ti surfaces had dramatically reduced platelet adhesion when compared to uncoated Ti surfaces. These results indicate that peripheral blood-derived EPCs adhere and function normally on Ti surfaces. Therefore EPCs may be used to seed cardiovascular devices prior to implantation to ameliorate platelet activation and thrombus formation.


Asunto(s)
Materiales Biocompatibles/farmacología , Células Endoteliales/citología , Corazón Auxiliar , Implantes Experimentales , Ensayo de Materiales/métodos , Células Madre/citología , Titanio/farmacología , Animales , Bovinos , Adhesión Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Separación Celular , Supervivencia Celular/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Células Endoteliales/ultraestructura , Fibrinolíticos/farmacología , Óxido Nítrico/biosíntesis , Adhesividad Plaquetaria/efectos de los fármacos , Reología/efectos de los fármacos , Células Madre/efectos de los fármacos , Células Madre/metabolismo , Estrés Mecánico , Propiedades de Superficie/efectos de los fármacos , Sus scrofa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...