Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
1.
J Endocr Soc ; 8(7): bvae100, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38831864

RESUMEN

Prostaglandin E2 (PGE2) is a key mediator of inflammation and is derived from the omega-6 polyunsaturated fatty acid, arachidonic acid (AA). In the ß-cell, the PGE2 receptor, Prostaglandin EP3 receptor (EP3), is coupled to the unique heterotrimeric G protein alpha subunit, Gɑz to reduce the production of cyclic adenosine monophosphate (cAMP), a key signaling molecule that activates ß-cell function, proliferation, and survival pathways. Nonobese diabetic (NOD) mice are a strong model of type 1 diabetes (T1D), and NOD mice lacking Gɑz are protected from hyperglycemia. Therefore, limiting systemic PGE2 production could potentially improve both the inflammatory and ß-cell dysfunction phenotype of T1D. Here, we sought to evaluate the effect of eicosapentaenoic acid (EPA) feeding, which limits PGE2 production, on the early T1D phenotype of NOD mice in the presence and absence of Gαz. Wild-type and Gαz knockout NOD mice were fed a control or EPA-enriched diet for 12 weeks, beginning at age 4 to 5 weeks. Oral glucose tolerance, splenic T-cell populations, islet cytokine/chemokine gene expression, islet insulitis, measurements of ß-cell mass, and measurements of ß-cell function were quantified. EPA diet feeding and Gɑz loss independently improved different aspects of the early NOD T1D phenotype and coordinated to alter the expression of certain cytokine/chemokine genes and enhance incretin-potentiated insulin secretion. Our results shed critical light on the Gαz-dependent and -independent effects of dietary EPA enrichment and provide a rationale for future research into novel pharmacological and dietary adjuvant therapies for T1D.

2.
Radiother Oncol ; 192: 110093, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38224919

RESUMEN

PURPOSE: Salivary dysfunction is a significant side effect of radiation therapy for head and neck cancer (HNC). Preliminary data suggests that mesenchymal stromal cells (MSCs) can improve salivary function. Whether MSCs from HNC patients who have completed chemoradiation are functionally similar to those from healthy patients is unknown. We performed a pilot clinical study to determine whether bone marrow-derived MSCs [MSC(M)] from HNC patients could be used for the treatment of RT-induced salivary dysfunction. METHODS: An IRB-approved pilot clinical study was undertaken on HNC patients with xerostomia who had completed treatment two or more years prior. Patients underwent iliac crest bone marrow aspirate and MSC(M) were isolated and cultured. Culture-expanded MSC(M) were stimulated with IFNγ and cryopreserved prior to reanimation and profiling for functional markers by flow cytometry and ELISA. MSC(M) were additionally injected into mice with radiation-induced xerostomia and the changes in salivary gland histology and salivary production were examined. RESULTS: A total of six subjects were enrolled. MSC(M) from all subjects were culture expanded to > 20 million cells in a median of 15.5 days (range 8-20 days). Flow cytometry confirmed that cultured cells from HNC patients were MSC(M). Functional flow cytometry demonstrated that these IFNγ-stimulated MSC(M) acquired an immunosuppressive phenotype. IFNγ-stimulated MSC(M) from HNC patients were found to express GDNF, WNT1, and R-spondin 1 as well as pro-angiogenesis and immunomodulatory cytokines. In mice, IFNγ-stimulated MSC(M) injection after radiation decreased the loss of acinar cells, decreased the formation of fibrosis, and increased salivary production. CONCLUSIONS: MSC (M) from previously treated HNC patients can be expanded for auto-transplantation and are functionally active. Furthermore IFNγ-stimulated MSC(M) express proteins implicated in salivary gland regeneration. This study provides preliminary data supporting the feasibility of using autologous MSC(M) from HNC patients to treat RT-induced salivary dysfunction.


Asunto(s)
Neoplasias de Cabeza y Cuello , Células Madre Mesenquimatosas , Traumatismos por Radiación , Xerostomía , Humanos , Animales , Ratones , Médula Ósea , Xerostomía/etiología , Xerostomía/terapia , Neoplasias de Cabeza y Cuello/radioterapia , Glándulas Salivales , Traumatismos por Radiación/etiología , Traumatismos por Radiación/terapia , Células de la Médula Ósea
3.
Mol Ther ; 31(11): 3117-3118, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37865098

RESUMEN

The mechanistically defined attributes of primed MSCs as here described not only provide a novel use case of MIF activated MSCs that can address the potency shortcomings of generic culture-adapted MSCs for acute lung injury but also provide some intriguing "Rosetta Stone" insights on plausible in vivo physiology of MSCs with host innate effectors such as macrophages in response to inflammation.


Asunto(s)
Asma , Factores Inhibidores de la Migración de Macrófagos , Trasplante de Células Madre Mesenquimatosas , Animales , Ratones , Humanos , Macrófagos , Asma/terapia , Inflamación , Transducción de Señal , Calgranulina A , Factores Inhibidores de la Migración de Macrófagos/genética , Oxidorreductasas Intramoleculares/genética
4.
Cytotherapy ; 2023 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-37804284

RESUMEN

Mesenchymal stromal cells (MSCs) are promising cell therapy candidates, but their debated efficacy in clinical trials still limits successful adoption. Here, we discuss proceedings from a roundtable session titled "Failure to Launch Mesenchymal Stromal Cells 10 Years Later: What's on the Horizon?" held at the International Society for Cell & Gene Therapy 2023 Annual Meeting. Panelists discussed recent progress toward developing patient-stratification approaches for MSC treatments, highlighting the role of baseline levels of inflammation in mediating MSC treatment efficacy. In addition, MSC critical quality attributes (CQAs) are beginning to be elucidated and applied to investigational MSC products, including immunomodulatory functional assays and other potency markers that will help to ensure product consistency and quality. Lastly, next-generation MSC products, such as culture-priming strategies, were discussed as a promising strategy to augment MSC basal fitness and therapeutic potency. Key variables that will need to be considered alongside investigations of patient stratification approaches, CQAs and next-generation MSC products include the specific disease target being evaluated, route of administration of the cells and cell manufacturing parameters; these factors will have to be matched with postulated mechanisms of action towards treatment efficacy. Taken together, patient stratification metrics paired with the selection of therapeutically potent MSCs (using rigorous CQAs and/or engineered MSC products) represent a path forward to improve clinical successes and regulatory endorsements.

5.
Cytotherapy ; 25(11): 1139-1144, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37589639

RESUMEN

BACKGROUND AIMS: Xerostomia, or the feeling of dry mouth, is a significant side effect of radiation therapy for patients with head and neck cancer (HNC). Preliminary data suggest that mesenchymal stromal/stem cells (MSCs) can improve salivary function. We performed a first-in-human pilot study of interferon gamma (IFNγ)-stimulated autologous bone marrow-derived MSCs, or MSC(M), for the treatment of radiation-induced xerostomia (RIX). Here we present the primary safety and secondary efficacy endpoints. METHODS: A single-center pilot clinical trial was conducted investigating the safety and tolerability of autologous IFNγ-stimulated MSC(M). The study was conducted under an approved Food and Drug Administration Investigational New Drug application using an institutional review board-approved protocol (NCT04489732). Patients underwent iliac crest bone marrow aspirate and MSC(M) were isolated, cultured, stimulated with IFNγ and cryopreserved for later use. Banked cells were thawed and allowed to recover in culture before patients received a single injection of 10 × 106 MSC(M) into the right submandibular gland under ultrasound guidance. The primary objective was determination of safety and tolerability by evaluating dose-limiting toxicity (DLT). A DLT was defined as submandibular pain >5 on a standard 10-point pain scale or any serious adverse event (SAE) within 1 month after injection. Secondary objectives included analysis of efficacy as measured by salivary quantification and using three validated quality of life instruments. Quantitative results are reported as mean and standard deviation. RESULTS: Six patients with radiation-induced xerostomia who had completed radiation at least 2 years previously (average 7.8 years previously) were enrolled in the pilot study. The median age was 71 (61-74) years. Five (83%) patients were male. Five patients (83%) were treated with chemoradiation and one patient (17%) with radiation alone. Grade 1 pain was seen in 50% of patients after submandibular gland injection; all pain resolved within 4 days. No patients reported pain 1 month after injection, with no SAE or other DLTs reported 1 month after injection. The analysis of secondary endpoints demonstrated a trend of increased salivary production. Three patients (50%) had an increase in unstimulated saliva at 1 and 3 months after MSC(M) injection. Quality of life surveys also showed a trend toward improvement. CONCLUSIONS: Injection of autologous IFNγ-stimulated MSC(M) into a singular submandibular gland of patients with RIX is safe and well tolerated in this pilot study. A trend toward an improvement in secondary endpoints of salivary quantity and quality of life was observed. This first-in-human study provides support for further investigation into IFNγ-stimulated MSC(M) injected in both submandibular glands as an innovative approach to treat RIX and improve quality of life for patients with HNC.


Asunto(s)
Neoplasias de Cabeza y Cuello , Células Madre Mesenquimatosas , Traumatismos por Radiación , Xerostomía , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Médula Ósea , Interferón gamma , Dolor , Proyectos Piloto , Calidad de Vida , Traumatismos por Radiación/etiología , Traumatismos por Radiación/terapia , Humedales , Xerostomía/etiología , Xerostomía/terapia
6.
Cytotherapy ; 25(8): 803-807, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37149800

RESUMEN

The rapidly growing field of mesenchymal stromal cell (MSC) basic and translational research requires standardization of terminology and functional characterization. The International Standards Organization's (ISO) Technical Committee (TC) on Biotechnology, working with extensive input from the International Society for Cells and Gene Therapy (ISCT), has recently published ISO standardization documents that are focused on biobanking of MSCs from two tissue sources, Wharton's Jelly, MSC(WJ) and Bone Marrow, MSC(M)), for research and development purposes and development. This manuscript explains the path towards the consensus on the following two documents: the Technical Standard ISO/TS 22859 for MSC(WJ) and the full ISO Standard 24651 for MSC(M) biobanking. The ISO standardization documents are aligned with ISCT's MSC committee position and recommendations on nomenclature because there was active input and incorporation of ISCT MSC committee recommendations in the development of these standards. The ISO standardization documents contain both requirements and recommendations for functional characterization of MSC(WJ) and MSC(M) using a matrix of assays. Importantly, the ISO standardization documents have a carefully defined scope and are meant for research use of culture expanded MSC(WJ) and MSC(M). The ISO standardization documents can be updated in a revision process and will be systematically reviewed after 3-5 years as scientific insights grow. They represent international consensus on MSC identity, definition, and characterization; are rigorous in detailing multivariate characterization of MSCs and represent an evolving-but-important first step in standardization of MSC biobanking and characterization for research use and development.


Asunto(s)
Células Madre Mesenquimatosas , Gelatina de Wharton , Cordón Umbilical , Médula Ósea , Bancos de Muestras Biológicas , Diferenciación Celular , Proliferación Celular , Células Cultivadas
8.
Sci Adv ; 8(46): eadc9222, 2022 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-36383652

RESUMEN

Cell fate determination of human mesenchymal stem/stromal cells (hMSCs) is precisely regulated by lineage-specific transcription factors and epigenetic enzymes. We found that CTR9, a key scaffold subunit of polymerase-associated factor complex (PAFc), selectively regulates hMSC differentiation to osteoblasts and chondrocytes, but not to adipocytes. An in vivo ectopic osteogenesis assay confirmed the essentiality of CTR9 in hMSC-derived bone formation. CTR9 counteracts the activity of Enhancer Of Zeste 2 (EZH2), the epigenetic enzyme that deposits H3K27me3, in hMSCs. Accordingly, CTR9 knockdown (KD) hMSCs gain H3K27me3 mark, and the osteogenic differentiation defects of CTR9 KD hMSCs can be partially rescued by treatment with EZH2 inhibitors. Transcriptome analyses identified bone morphology protein-2 (BMP-2) as a downstream effector of CTR9. BMP-2 secretion, membrane anchorage, and the BMP-SMAD pathway were impaired in CTR9 KD MSCs, and the effects were rescued by BMP-2 supplementation. This study uncovers an epigenetic mechanism engaging the CTR9-H3K27me3-BMP-2 axis to regulate the osteochondral lineage differentiation of hMSCs.


Asunto(s)
Células Madre Mesenquimatosas , Osteogénesis , Humanos , Células Madre Mesenquimatosas/metabolismo , Epigénesis Genética , Histonas/metabolismo , Diferenciación Celular/genética , Osteoblastos , Fosfoproteínas/metabolismo , Factores de Transcripción/metabolismo
9.
Front Immunol ; 13: 959658, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36189324

RESUMEN

Despite the curative potential of hematopoietic cell transplantation (HCT) for hematologic malignancies, graft-versus-host disease (GVHD) remains a substantial cause of morbidity and mortality, particularly if treatment is refractory. Treatment with additional immunosuppression including steroids often leads to opportunistic infections and organ dysfunction. Novel therapies are greatly needed, specifically ones that lead to responses in treatment-refractory patients and are better tolerated. Mesenchymal stromal cells (MSCs) are non-hematopoietic tolerogenic cells present in normal bone marrow (BM), which can be expanded ex vivo to therapeutic doses. Their safety and efficacy have been assessed in inflammatory disorders including GVHD, but heterogeneity in clinical responses has led some to examine MSC manufacturing and administration procedures, which may impact in vivo efficacy. We hypothesized that autologous, early-passage, and culture-recovered (after freeze and thaw) MSCs would be safe and may have superior efficacy. In this phase I single-center trial, we assessed MSC safety and early efficacy of an escalating number of doses (2 × 106/kg doses; dose level 1, single dose; dose level 2, two weekly doses; dose level 3, four weekly doses) in patients aged ≥12 years with treatment-refractory acute or chronic GVHD. Eleven enrolled patients received some or all planned MSC infusions, with a median age at enrollment of 37 years. The most common primary HCT indication was leukemia, and the median time from HCT to first MSC infusion was 2.6 years. MSC infusion was well tolerated, with all severe adverse events expected and determined to be unlikely or definitely not related to the study. Thus, no dose-limiting toxicities occurred in the three dose levels. Three of four patients with acute GVHD (or overlap with acute features) had responses seen at any timepoint, ranging from partial to complete. In those with a chronic GVHD indication (n = 7), an overall response at 3 months was partial in five, stable in one, and progressive in one. No appreciable differences were seen between dose levels in peripheral blood lymphocyte subsets. In conclusion, autologous and culture-recovered MSCs were safe in the setting of refractory GVHD following HCT for hematologic malignancy, and clinical responses were most notable in patients with acute GVHD.


Asunto(s)
Enfermedad Injerto contra Huésped , Neoplasias Hematológicas , Trasplante de Células Madre Hematopoyéticas , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Adulto , Enfermedad Injerto contra Huésped/etiología , Enfermedad Injerto contra Huésped/terapia , Neoplasias Hematológicas/patología , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Trasplante de Células Madre Hematopoyéticas/métodos , Humanos , Trasplante de Células Madre Mesenquimatosas/efectos adversos , Trasplante de Células Madre Mesenquimatosas/métodos , Esteroides
11.
NPJ Regen Med ; 7(1): 41, 2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-36045134

RESUMEN

Adipogenic differentiation of visceral adipose tissue-resident multipotent mesenchymal stromal cells (VA-MSC) into adipocytes is metabolically protective. Under chronic inflammatory stress, this neoadipogenesis process is suppressed by various pro-inflammatory cytokines and growth factors. However, the underlying mechanism(s) regulating VA-MSC plasticity remains largely unexplored. Using an adipogenic differentiation screen, we identified IFNγ and TGFß as key inhibitors of primary human VA-MSC differentiation. Further studies using human and mouse VA-MSCs and a chronic high-fat diet-fed murine model revealed that IFNγ/JAK2-activated STAT5 transcription factor is a central regulator of VA-MSC differentiation under chronic inflammatory conditions. Furthermore, our results indicate that under such conditions, IFNγ-activated STAT5 and TGFß-activated Smad3 physically interact via Smad4. This STAT5-Smad4-Smad3 complex plays a crucial role in preventing the early adipogenic commitment of VA-MSCs by suppressing key pro-adipogenic transcription factors, including CEBPδ, CEBPα, and PPARγ. Genetic or pharmacological disruption of IFNγ-TGFß synergy by inhibiting either STAT5 or Smad3 rescued adipogenesis under chronic inflammatory stress. Overall, our study delineates a central mechanism of MSC plasticity regulation by the convergence of multiple inflammatory signaling pathways.

12.
Am J Transplant ; 22(11): 2571-2585, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35897156

RESUMEN

Allogeneic islet transplantation is a promising experimental therapy for poorly controlled diabetes. Despite pharmacological immunosuppression, long-term islet engraftment remains elusive. Here, we designed a synthetic fusion transgene coupling PD-L1 and indoleamine dioxygenase [hereafter PIDO] whose constitutive expression prevents immune destruction of genetically engineered islet allograft transplanted in immunocompetent mice. PIDO expressing murine islets maintain robust dynamic insulin secretion in vitro and when transplanted in allogeneic hyperglycemic murine recipients reverse pre-existing streptozotocin-induced and autoimmune diabetes in the absence of pharmacological immunosuppression for more than 50 and 8 weeks, respectively, and is dependent on host CD4 competence. Additionally, PIDO expression in allografts preserves endocrine functional viability of islets and promotes a localized tolerogenic milieu characterized by the suppression of host CD8 T cell and phagocyte recruitment and accumulation of FOXP3+ Tregs. Furthermore, in the canine model of xenogeneic islet transplantation, muscle implanted PIDO-expressing porcine islets displayed physiological glucose-responsive insulin secretion competency in euglycemic recipient for up to 20 weeks. In conclusion, the PIDO transgenic technology enables host CD4+ T cell-modulated immune evasiveness and long-term functional viability of islet allo- and xenografts in immune-competent recipients without the need for pharmacological immune suppression and would allow for improved outcomes for tissue transplantation.


Asunto(s)
Diabetes Mellitus Tipo 1 , Trasplante de Islotes Pancreáticos , Islotes Pancreáticos , Animales , Perros , Humanos , Ratones , Aloinjertos , Antígeno B7-H1/metabolismo , Rechazo de Injerto/prevención & control , Supervivencia de Injerto , Terapia de Inmunosupresión , Islotes Pancreáticos/metabolismo , Ratones Endogámicos C57BL , Porcinos , Indolamina-Pirrol 2,3,-Dioxigenasa
13.
Cytotherapy ; 24(7): 686-690, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35545453

RESUMEN

Hospital exemption (HE) is a regulated pathway that allows the use of advanced therapy medicinal products (ATMPs) within the European Union (EU) under restrictive conditions overseen by national medicine agencies. In some EU countries, HE is granted for ATMPs with no demonstrated safety and efficacy; therefore, they are equivalent to investigational drugs. In other countries, HE is granted for ATMPs with demonstrated quality, safety and efficacy and for which centralized marketing authorization has not been requested. The Committee on the Ethics of Cell and Gene Therapy of the International Society for Cell & Gene Therapy reflects here on the ethical issues concerning HE application from the perspective of the patient, including risk-benefit balance, accessibility and transparency, while providing evidence that HE must not be regarded as a conduit for unproven and unethical ATMP-based interventions. Indeed, HE represents a legal instrument under which a patient's need for access to novel ATMPs is reconciled with ethics. Moreover, for some unmet medical needs, HE is the only pathway for accessing innovative ATMPs. Nonetheless, HE harmonization across EU Member States and limitations of ATMP use under the HE rule when similar products have already been granted centralized marketing authorization to avoid a parallel regulatory pathway are controversial issues whose political and economic consequences are beyond the scope of this review. Finally, the institution of an EU registry of HE applications and outcomes represents a priority to improve transparency, reduce patient risks, increase efficiency of health systems, facilitate company awareness of business opportunities and boost progressive entry of ATMPs into the therapeutic repertoire of health systems.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos , Terapias en Investigación , Comercio , Unión Europea , Hospitales , Humanos
14.
J Mol Med (Berl) ; 100(9): 1253-1265, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35538149

RESUMEN

Many autoimmune diseases exhibit a strikingly increased prevalence in females, with primary Sjögren's syndrome (pSS) being the most female-predominant example. However, the molecular basis underlying the female-bias in pSS remains elusive. To address this knowledge gap, we performed genome-wide, allele-specific profiling of minor salivary gland-derived mesenchymal stromal cells (MSCs) from pSS patients and control subjects, and detected major differences in the regulation of X-linked genes. In control female MSCs, X-linked genes were expressed from both paternal and maternal X chromosomes with a median paternal ratio of ~ 0.5. However, in pSS female MSCs, X-linked genes exhibited preferential expression from one of the two X chromosomes. Concomitantly, pSS MSCs showed decrease in XIST levels and reorganization of H3K27me3+ foci in the nucleus. Moreover, the HLA-locus-expressed miRNA miR6891-5p was decreased in pSS MSCs. miR6891-5p inhibition in control MSCs caused XIST dysregulation, ectopic silencing, and allelic skewing. Allelic skewing was accompanied by the mislocation of protein products encoded by the skewed genes, which was recapitulated by XIST and miR6891-5p disruption in control MSCs. Our data reveal X skewing as a molecular hallmark of pSS and highlight the importance of restoring X-chromosomal allelic balance for pSS treatment. KEY MESSAGES: X-linked genes exhibit skewing in primary Sjögren's syndrome (pSS). X skewing in pSS associates with alterations in H3K27me3 deposition. pSS MSCs show decreased levels of miR6891-5p, a HLA-expressed miRNA. miR6891-5p inhibition causes H3K27me3 dysregulation and allelic skewing.


Asunto(s)
Genes Ligados a X , MicroARNs , Síndrome de Sjögren , Femenino , Histonas/genética , Humanos , MicroARNs/genética , Síndrome de Sjögren/genética
15.
Stem Cells Transl Med ; 11(6): 630-643, 2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-35438788

RESUMEN

Preserving islet health and function is critical during pretransplant culture to improve islet transplantation outcome and for ex vivo modeling of diabetes for pharmaceutical drug discovery. The limited islet engraftment potential is primarily attributable to loss of extracellular matrix (ECM) support and interaction. Multipotent cells with ECM depositing competency improve islet survival during short coculture period. However, role of pancreatic stellate cells (PSCs) and their ECM support in preserving ex vivo islet physiology remains largely unknown. Here, we report novel cytoprotective effects of culture-adapted porcine PSCs and role of their ECM-mediated intercellular communication on pig, mouse and human islets ex vivo. Using direct-contact coculture system, we demonstrate that porcine PSCs preserve and significantly prolong islet viability and function from 7 ± 3 days to more than 28 ± 5 (P < .001) days in vitro. These beneficial effects of PSCs on islet health are not species-specific. Using NSC47924 to specifically inhibit 37/67 kDa laminin receptor (LR), we identified that LR-mediated intercellular communication is essential for PSCs to protect functional viability of islets in vitro. Finally, our results demonstrate that PSC co-transplantation improved function and enhanced capacity of syngeneic islets to reverse hyperglycemia in mice with preexisiting diabetes. Cumulatively, our findings unveil novel effects of culture-adapted PSCs on islet health likely mirroring in vivo niche interaction. Furthermore, islet and PSC coculture may aid in development of ex vivo diabetes modeling and also suggests that a combined islet-PSC tissue engineered implant may significantly improve islet transplantation outcome.


Asunto(s)
Trasplante de Islotes Pancreáticos , Islotes Pancreáticos , Animales , Técnicas de Cocultivo , Matriz Extracelular , Trasplante de Islotes Pancreáticos/métodos , Ratones , Células Estrelladas Pancreáticas , Porcinos
16.
Cytotherapy ; 24(5): 534-543, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35183442

RESUMEN

BACKGROUND: Xerostomia, or dry mouth, is a common side effect of head and neck radiation. Current treatment options for radiation-induced xerostomia are generally supportive in nature. Adult stem cells are the ultimate source for replenishment of salivary gland tissue. Bone marrow-derived mesenchymal stromal cells (BM-MSCs) are a viable cell-based therapy for xerostomia. We have undertaken studies enabling U.S. Food and Drug Administration Investigational New Drug status, demonstrating the normal phenotype, intact functionality, and pro-growth secretome of interferon-γ (IFNγ)-stimulated BM-MSCs taken from patients with head and neck cancer who have undergone radiation ± chemotherapy. Here we present the protocol of MARSH, a first-in-human clinical trial of bone marrow-derived, IFNγ-activated BM-MSCs for the treatment of radiation-induced xerostomia. METHODS: This single-center phase 1 dose-escalation with expansion cohort, non-placebo-controlled study will assess the safety and tolerability of BM-MSCs for the treatment of radiation-induced xerostomia in patients who had head and neck cancer. The phase 1 dose-escalation study will be a 3 + 3 design with staggered enrollment. A total of 21 to 30 subjects (9 to 18 in phase 1 study, 12 in expansion cohort) will be enrolled. The primary endpoint is determining the recommended phase 2 dose (RP2D) of IFNγ-stimulated BM-MSCs to enable further studies on the efficacy of BM-MSCs. Patients' bone marrow will be aspirated, and BM-MSCs will be expanded, stimulated with IFNγ, and injected into the submandibular gland. The RP2D will be determined by dose-limiting toxicities occurring within 1 month of BM-MSC injection. Secondary outcomes of saliva amounts and composition, ultrasound of salivary glands, and quality of life surveys will be taken at 3-, 6-, 12-, and 24-month visits. DISCUSSION: Autotransplantation of IFNγ-stimulated BM-MSCs in salivary glands after radiation therapy or chemoradiation therapy may provide an innovative remedy to treat xerostomia and restore quality of life. This is the first therapy for radiation-induced xerostomia that may be curative. TRIAL REGISTRATION: World Health Organization International Clinical Trials Registry Platform: NCT04489732.


Asunto(s)
Neoplasias de Cabeza y Cuello , Células Madre Mesenquimatosas , Traumatismos por Radiación , Xerostomía , Médula Ósea , Ensayos Clínicos Fase I como Asunto , Neoplasias de Cabeza y Cuello/radioterapia , Humanos , Calidad de Vida , Traumatismos por Radiación/terapia , Trasplante Autólogo , Humedales , Xerostomía/etiología , Xerostomía/terapia
17.
Rheumatology (Oxford) ; 61(10): 4207-4218, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-35218354

RESUMEN

OBJECTIVES: Sjögren's disease (SjD) is a systemic autoimmune disease characterized by focal lymphocytic infiltrate of salivary glands (SGs) and high SG IFNγ, both of which are associated with elevated lymphoma risk. IFNγ is also biologically relevant to mesenchymal stromal cells (MSCs), a SG resident cell with unique niche regenerative and immunoregulatory capacities. In contrast to the role of IFNγ in SjD, IFNγ promotes an anti-inflammatory MSC phenotype in other diseases. The objective of this study was to define the immunobiology of IFNγ-exposed SG-MSCs with and without the JAK1 & 2 inhibitor, ruxolitinib. METHODS: SG-MSCs were isolated from SjD and controls human subjects. SG-MSCs were treated with 10 ng/ml IFNγ +/- 1000 nM ruxolitinib. Experimental methods included flow cytometry, RNA-sequencing, chemokine array, ELISA and transwell chemotaxis experiments. RESULTS: We found that IFNγ promoted expression of SG-MSC immunomodulatory markers, including HLA-DR, and this expression was inhibited by ruxolitinib. We confirmed the differential expression of CXCL9, CXCL10, CXCL11, CCL2 and CCL7, initially identified with RNA sequencing. SG-MSCs promoted CD4+ T cell chemotaxis when pre-stimulated with IFNγ. Ruxolitinib blocks chemotaxis through inhibition of SG-MSC production of CXCL9, CXCL10 and CXCL11. CONCLUSIONS: These findings establish that ruxolitinib inhibits IFNγ-induced expression of SG-MSC immunomodulatory markers and chemokines. Ruxolitinib also reverses IFNγ-induced CD4+ T cell chemotaxis, through inhibition of CXCL9, -10 and -11. Because IFNγ is higher in SjD than control SGs, we have identified SG-MSCs as a plausible pathogenic cell type in SjD. We provide proof of concept supporting further study of ruxolitinib to treat SjD.


Asunto(s)
Glándulas Salivales , Síndrome de Sjögren , Quimiotaxis , Antígenos HLA-DR/metabolismo , Humanos , Interferón gamma/metabolismo , Nitrilos , Pirazoles , Pirimidinas , ARN , Glándulas Salivales/patología
18.
Front Immunol ; 12: 708950, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34386012

RESUMEN

Mesenchymal stromal cells (MSCs) are being tested as a cell therapy in clinical trials for dozens of inflammatory disorders, with varying levels of efficacy reported. Suitable and robust preclinical animal models for testing the safety and efficacy of different types of MSC products before use in clinical trials are rare. We here introduce two highly robust animal models of immune pathology: 1) acute radiation syndrome (ARS) and 2) graft versus host disease (GvHD), in conjunction with studying the immunomodulatory effect of well-characterized Interferon gamma (IFNγ) primed bone marrow derived MSCs. The animal model of ARS is based on clinical grade dosimetry precision and bioluminescence imaging. We found that allogeneic MSCs exhibit lower persistence in naïve compared to irradiated animals, and that intraperitoneal infusion of IFNγ prelicensed allogeneic MSCs protected animals from radiation induced lethality by day 30. In direct comparison, we also investigated the effect of IFNγ prelicensed allogeneic MSCs in modulating acute GvHD in an animal model of MHC major mismatched bone marrow transplantation. Infusion of IFNγ prelicensed allogeneic MSCs failed to mitigate acute GvHD. Altogether our results demonstrate that infused IFNγ prelicensed allogeneic MSCs protect against lethality from ARS, but not GvHD, thus providing important insights on the dichotomy of IFNγ prelicensed allogenic MSCs in well characterized and robust animal models of acute tissue injury.


Asunto(s)
Síndrome de Radiación Aguda/terapia , Enfermedad Injerto contra Huésped/terapia , Interferón gamma/farmacología , Trasplante de Células Madre Mesenquimatosas , Animales , Modelos Animales de Enfermedad , Femenino , Mediciones Luminiscentes , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Trasplante Homólogo
19.
Cytotherapy ; 23(12): 1060-1063, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34116944

RESUMEN

The Cellular Therapy Coding and Labeling Advisory Group of the International Council for Commonality in Blood Banking Automation and the International Society for Cell & Gene Therapy mesenchymal stromal cell (MSC) committee are providing specific recommendations on abbreviating tissue sources of culture-adapted MSCs. These recommendations include using abbreviations based on the ISBT 128 terminology model that specifies standard class names to distinguish cell types and tissue sources for culture-adapted MSCs. Thus, MSCs from bone marrow are MSC(M), MSCs from cord blood are MSC(CB), MSCs from adipose tissue are MSC(AT) and MSCs from Wharton's jelly are MSC(WJ). Additional recommendations include using these abbreviations through the full spectrum of pre-clinical, translational and clinical research for the development of culture-adapted MSC products. This does not apply to basic research focused on investigating the developmental origins, identity or functionalities of endogenous progenitor cells in different tissues. These recommendations will serve to harmonize nomenclature in describing research and development surrounding culture-adapted MSCs, many of which are destined for clinical and/or commercial translation. These recommendations will also serve to align research and development efforts on culture-adapted MSCs with other cell therapy products.


Asunto(s)
Células Madre Mesenquimatosas , Gelatina de Wharton , Automatización , Bancos de Sangre , Diferenciación Celular , Proliferación Celular , Tratamiento Basado en Trasplante de Células y Tejidos , Células Cultivadas , Consenso , Terapia Genética
20.
Transplant Cell Ther ; 27(5): 389.e1-389.e10, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33965175

RESUMEN

Ruxolitinib is a JAK2/JAK1 inhibitor that blocks the inflammatory JAK-STAT signaling pathway. Ruxolitinib has been demonstrated to be effective in the treatment of steroid-resistant acute graft-versus-host disease (GVHD). Ruxolitinib's effect on inflammatory cells of hematopoietic origin is known. However, its effect on nonhematopoietic cell types with immune-modulating and antigen-presenting cell competency plausibly involved in pathogenesis of GVHD has not been explored. Mesenchymal stromal cells (MSCs) are CD45- nonhematopoietic cells of the bone marrow with immune modulatory functions in vivo. MSCs' immunobiology largely depends on their responsiveness to IFNγ. We aimed to define the effect of ruxolitinib on the immunobiology of MSCs that are modulated by IFNγ. Human bone marrow derived MSCs, peripheral blood mononuclear cells (PBMCs), and primary bone marrow aspirates were analyzed for their sensitivity to ruxolitinib-mediated blocking of IFNγ-induced STAT-1 phosphorylation and downstream effector molecules, utilizing Western blot, flow cytometry, secretome analysis, and phosflow techniques. IFNγ-induced cytostatic effects on MSCs are reversed by ruxolitinib. Ruxolitinib inhibits IFNγ and secretome of activated peripheral PBMC-induced STAT-1 phosphorylation on human bone marrow derived MSCs. In addition, ruxolitinib inhibits IFNγ-induced pro-GVHD pathways on MSCs, which includes HLAABC(MHCI), HLADR(MHCII), CX3CL1, and CCL2. IFNγ-induced immunosuppressive molecules IDO and PDL-1 were also inhibited by ruxolitinib on MSCs. Comparative analysis with PBMCs has demonstrated that MSCs are as equal as to HLADR+ PBMC populations in responding to ruxolitinib-mediated inhibition of IFNγ-induced STAT-1 phosphorylation. Ex vivo analysis of human marrow aspirates has demonstrated that ruxolitinib blocks IFNγ-induced STAT-1 phosphorylation in CD45+/-HLADR+/- populations at different levels, which is depending on their sensitivity to IFNγ responsiveness. These results inform the hypothesis that ruxolitinib's immune-modulatory effects in vivo may pharmacologically involve marrow and tissue-resident MSCs. Ruxolitinib affects the immunobiology of MSCs equivalent to professional HLADR+ antigen presenting cells, which collectively mitigate GVHD.


Asunto(s)
Células Madre Mesenquimatosas , Médula Ósea , Proliferación Celular , Humanos , Leucocitos Mononucleares , Nitrilos , Pirazoles , Pirimidinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA