Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Transl Med ; 16(768): eado9026, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39383243

RESUMEN

Despite effective countermeasures, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) persists worldwide because of its ability to diversify and evade human immunity. This evasion stems from amino acid substitutions, particularly in the receptor binding domain (RBD) of the spike protein that confers resistance to vaccine-induced antibodies and antibody therapeutics. To constrain viral escape through resistance mutations, we combined antibody variable regions that recognize different RBD sites into multispecific antibodies. Here, we describe multispecific antibodies, including a trivalent trispecific antibody that potently neutralized diverse SARS-CoV-2 variants and prevented virus escape more effectively than single antibodies or mixtures of the parental antibodies. Despite being generated before the appearance of Omicron, this trispecific antibody neutralized all major Omicron variants through BA.4/BA.5 at nanomolar concentrations. Negative stain electron microscopy suggested that synergistic neutralization was achieved by engaging different epitopes in specific orientations that facilitated binding across more than one spike protein. Moreover, a tetravalent trispecific antibody containing the same variable regions as the trivalent trispecific antibody also protected Syrian hamsters against Omicron variants BA.1, BA.2, and BA.5 challenge, each of which uses different amino acid substitutions to mediate escape from therapeutic antibodies. These results demonstrated that multispecific antibodies have the potential to provide broad SARS-CoV-2 coverage, decrease the likelihood of escape, simplify treatment, and provide a strategy for antibody therapies that could help eliminate pandemic spread for this and other pathogens.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19 , Evasión Inmune , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , SARS-CoV-2/inmunología , Animales , COVID-19/inmunología , COVID-19/prevención & control , COVID-19/virología , Humanos , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/uso terapéutico , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/química , Anticuerpos Antivirales/inmunología , Ratones , Epítopos/inmunología , Mesocricetus , Cricetinae , Anticuerpos Biespecíficos/inmunología , Anticuerpos Biespecíficos/farmacología
2.
NPJ Vaccines ; 9(1): 171, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39289377

RESUMEN

The relative conservation of the influenza hemagglutinin (HA) stem compared to that of the immunodominant HA head makes the HA stem an attractive target for broadly protective influenza vaccines. Here we report the first-in-human, dose-escalation, open-label trial (NCT04579250) evaluating an unadjuvanted group 2 stabilized stem ferritin nanoparticle vaccine based on the H10 A/Jiangxi-Donghu/346/2013 influenza HA, H10ssF, in healthy adults. Participants received a single 20 mcg dose (n = 3) or two 60 mcg doses 16 weeks apart (n = 22). Vaccination with H10ssF was safe and well tolerated with only mild systemic and local reactogenicity reported. No serious adverse events occurred. Vaccination significantly increased homologous H10 HA stem binding and neutralizing antibodies at 2 weeks after both first and second vaccinations, and these responses remained above baseline at 40 weeks. Heterologous H3 and H7 binding antibodies also significantly increased after each vaccination and remained elevated throughout the study. These data indicate that the group 2 HA stem nanoparticle vaccine is safe and induces stem-directed binding and neutralizing antibodies.

3.
J Pharm Biomed Anal ; 251: 116455, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39232447

RESUMEN

Bi-functional N-Hydroxysuccinimide (NHS) linkers are widely used in the conjugation processes linking an immunogen with a carrier protein capable of boosting immunity. A potential vaccine candidate against HIV-1, called fusion peptide (FP), is covalently linked to the recombinant tetanus toxoid heavy-chain fragment C (rTTHC) via this type of linker. A reversed-phase liquid chromatography (RPLC-UV) method was used to monitor the linker's degradation kinetics in various buffers, mimicking the steps in the conjugation process. The kinetics of the reactivities of the linkers are revealed in this study and can provide a good guidance to help effective conjugation process before these linkers are completely hydrolyze to the inactive degradants. Three cross-linkers degradation pathways were evaluated: Sulfosuccinimidyl (4-iodoacetyl) aminobenzoate (Sulfo-SIAB), PEGylated SMCC (SM(PEG)2), and N-γ-maleimidobutyryl-oxysulfosuccinimide ester (Sulfo-GMBS). We have reported kinetics for Sulfo-SIAB.


Asunto(s)
Cromatografía de Fase Inversa , Polietilenglicoles , Succinimidas , Cromatografía de Fase Inversa/métodos , Succinimidas/química , Polietilenglicoles/química , Cinética , Reactivos de Enlaces Cruzados/química , Toxoide Tetánico/química , Proteínas Recombinantes de Fusión/química
4.
N Engl J Med ; 390(17): 1549-1559, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38669354

RESUMEN

BACKGROUND: Subcutaneous administration of the monoclonal antibody L9LS protected adults against controlled Plasmodium falciparum infection in a phase 1 trial. Whether a monoclonal antibody administered subcutaneously can protect children from P. falciparum infection in a region where this organism is endemic is unclear. METHODS: We conducted a phase 2 trial in Mali to assess the safety and efficacy of subcutaneous administration of L9LS in children 6 to 10 years of age over a 6-month malaria season. In part A of the trial, safety was assessed at three dose levels in adults, followed by assessment at two dose levels in children. In part B of the trial, children were randomly assigned, in a 1:1:1 ratio, to receive 150 mg of L9LS, 300 mg of L9LS, or placebo. The primary efficacy end point, assessed in a time-to-event analysis, was the first P. falciparum infection, as detected on blood smear performed at least every 2 weeks for 24 weeks. A secondary efficacy end point was the first episode of clinical malaria, as assessed in a time-to-event analysis. RESULTS: No safety concerns were identified in the dose-escalation part of the trial (part A). In part B, 225 children underwent randomization, with 75 children assigned to each group. No safety concerns were identified in part B. P. falciparum infection occurred in 36 participants (48%) in the 150-mg group, in 30 (40%) in the 300-mg group, and in 61 (81%) in the placebo group. The efficacy of L9LS against P. falciparum infection, as compared with placebo, was 66% (adjusted confidence interval [95% CI], 45 to 79) with the 150-mg dose and 70% (adjusted 95% CI, 50 to 82) with the 300-mg dose (P<0.001 for both comparisons). Efficacy against clinical malaria was 67% (adjusted 95% CI, 39 to 82) with the 150-mg dose and 77% (adjusted 95% CI, 55 to 89) with the 300-mg dose (P<0.001 for both comparisons). CONCLUSIONS: Subcutaneous administration of L9LS to children was protective against P. falciparum infection and clinical malaria over a period of 6 months. (Funded by the National Institute of Allergy and Infectious Diseases; ClinicalTrials.gov number, NCT05304611.).


Asunto(s)
Anticuerpos Monoclonales Humanizados , Malaria Falciparum , Adulto , Niño , Femenino , Humanos , Masculino , Relación Dosis-Respuesta a Droga , Método Doble Ciego , Enfermedades Endémicas/prevención & control , Inyecciones Subcutáneas , Estimación de Kaplan-Meier , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/epidemiología , Malaria Falciparum/prevención & control , Malí/epidemiología , Plasmodium falciparum , Resultado del Tratamiento , Anticuerpos Monoclonales Humanizados/administración & dosificación , Anticuerpos Monoclonales Humanizados/efectos adversos , Anticuerpos Monoclonales Humanizados/uso terapéutico , Terapia por Observación Directa , Combinación Arteméter y Lumefantrina/administración & dosificación , Combinación Arteméter y Lumefantrina/uso terapéutico , Adulto Joven , Persona de Mediana Edad
5.
JCI Insight ; 9(7)2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38587079

RESUMEN

BACKGROUNDBroadly neutralizing monoclonal antibodies (bNAbs) represent a promising strategy for HIV-1 immunoprophylaxis and treatment. 10E8VLS and VRC07-523LS are bNAbs that target the highly conserved membrane-proximal external region (MPER) and the CD4-binding site of the HIV-1 viral envelope glycoprotein, respectively.METHODSIn this phase 1, open-label trial, we evaluated the safety and pharmacokinetics of 5 mg/kg 10E8VLS administered alone, or concurrently with 5 mg/kg VRC07-523LS, via s.c. injection to healthy non-HIV-infected individuals.RESULTSEight participants received either 10E8VLS alone (n = 6) or 10E8VLS and VRC07-523LS in combination (n = 2). Five (n = 5 of 8, 62.5%) participants who received 10E8VLS experienced moderate local reactogenicity, and 1 participant (n = 1/8, 12.5%) experienced severe local reactogenicity. Further trial enrollment was stopped, and no participant received repeat dosing. All local reactogenicity resolved without sequelae. 10E8VLS retained its neutralizing capacity, and no functional anti-drug antibodies were detected; however, a serum t1/2 of 8.1 days was shorter than expected. Therefore, the trial was voluntarily stopped per sponsor decision (Vaccine Research Center, National Institute of Allergy and Infectious Diseases [NIAID], NIH). Mechanistic studies performed to investigate the underlying reason for the reactogenicity suggest that multiple mechanisms may have contributed, including antibody aggregation and upregulation of local inflammatory markers.CONCLUSION10E8VLS resulted in unexpected reactogenicity and a shorter t1/2 in comparison with previously tested bNAbs. These studies may facilitate identification of nonreactogenic second-generation MPER-targeting bNAbs, which could be an effective strategy for HIV-1 immunoprophylaxis and treatment.TRIAL REGISTRATIONClinicaltrials.gov, accession no. NCT03565315.FUNDINGDivision of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH.


Asunto(s)
Infecciones por VIH , Seropositividad para VIH , VIH-1 , Humanos , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/prevención & control , Anticuerpos Anti-VIH , Anticuerpos ampliamente neutralizantes/farmacología , Anticuerpos Monoclonales/farmacología
6.
Sci Rep ; 14(1): 4534, 2024 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-38402303

RESUMEN

Recent work by our laboratory and others indicates that co-display of multiple antigens on protein-based nanoparticles may be key to induce cross-reactive antibodies that provide broad protection against disease. To reach the ultimate goal of a universal vaccine for seasonal influenza, a mosaic influenza nanoparticle vaccine (FluMos-v1) was developed for clinical trial (NCT04896086). FluMos-v1 is unique in that it is designed to co-display four recently circulating haemagglutinin (HA) strains; however, current vaccine analysis techniques are limited to nanoparticle population analysis, thus, are unable to determine the valency of an individual nanoparticle. For the first time, we demonstrate by total internal reflection fluorescence microscopy and supportive physical-chemical methods that the co-display of four antigens is indeed achieved in single nanoparticles. Additionally, we have determined percentages of multivalent (mosaic) nanoparticles with four, three, or two HA proteins. The integrated imaging and physicochemical methods we have developed for single nanoparticle multivalency will serve to further understand immunogenicity data from our current FluMos-v1 clinical trial.


Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Nanopartículas , Humanos , Anticuerpos Antivirales , Glicoproteínas Hemaglutininas del Virus de la Influenza , Hemaglutininas , Inmunogenicidad Vacunal , Gripe Humana/prevención & control , Nanopartículas/química , Ensayos Clínicos como Asunto
7.
Sci Transl Med ; 15(716): eadg3540, 2023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-37792954

RESUMEN

Mpox virus (MPXV) caused a global outbreak in 2022. Although smallpox vaccines were rapidly deployed to curb spread and disease among those at highest risk, breakthrough disease was noted after complete immunization. Given the threat of additional zoonotic events and the virus's evolving ability to drive human-to-human transmission, there is an urgent need for an MPXV-specific vaccine that confers protection against evolving MPXV strains and related orthopoxviruses. Here, we demonstrate that an mRNA-lipid nanoparticle vaccine encoding a set of four highly conserved MPXV surface proteins involved in virus attachment, entry, and transmission can induce MPXV-specific immunity and heterologous protection against a lethal vaccinia virus (VACV) challenge. Compared with modified vaccinia virus Ankara (MVA), which forms the basis for the current MPXV vaccine, immunization with an mRNA-based MPXV vaccine generated superior neutralizing activity against MPXV and VACV and more efficiently inhibited spread between cells. We also observed greater Fc effector TH1-biased humoral immunity to the four MPXV antigens encoded by the vaccine, as well as to the four VACV homologs. Single MPXV antigen-encoding mRNA vaccines provided partial protection against VACV challenge, whereas multivalent vaccines combining mRNAs encoding two, three, or four MPXV antigens protected against disease-related weight loss and death equal or superior to MVA vaccination. These data demonstrate that an mRNA-based MPXV vaccine confers robust protection against VACV.


Asunto(s)
Vacuna contra Viruela , Vacunas Virales , Humanos , Monkeypox virus/genética , Virus Vaccinia/genética , Vacuna contra Viruela/genética , Antígenos Virales , ARN Mensajero/genética
8.
Lancet Infect Dis ; 23(12): 1408-1417, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37544326

RESUMEN

BACKGROUND: Sudan Ebola virus can cause severe viral disease, with an average case fatality rate of 54%. A recent outbreak of Sudan Ebola virus in Uganda caused 55 deaths among 164 confirmed cases in the second half of 2022. Although vaccines and therapeutics specific for Zaire Ebola virus have been approved for use during outbreak situations, Sudan Ebola virus is an antigenically distinct virus with no approved vaccines available. METHODS: In this phase 1, open-label, dose-escalation trial we evaluated the safety, tolerability, and immunogenicity of a monovalent chimpanzee adenovirus 3 vaccine against Sudan Ebola virus (cAd3-EBO S) at Makerere University Walter Reed Project in Kampala, Uganda. Study participants were recruited from the Kampala metropolitan area using International Review Board-approved written and electronic media explaining the trial intervention. Healthy adults without previous receipt of Ebola, Marburg, or cAd3 vectored-vaccines were enrolled to receive cAd3-EBO S at either 1 × 1010 or 1 × 1011 particle units (PU) in a single intramuscular vaccination and were followed up for 48 weeks. Primary safety and tolerability endpoints were assessed in all vaccine recipients by reactogenicity for the first 7 days, adverse events for the first 28 days, and serious adverse events throughout the study. Secondary immunogenicity endpoints included evaluation of binding antibody and T-cell responses against the Sudan Ebola virus glycoprotein, and neutralising antibody responses against the cAd3 vector at 4 weeks after vaccination. This study is registered with ClinicalTrials.gov, NCT04041570, and is completed. FINDINGS: 40 healthy adults were enrolled between July 22 and Oct 1, 2019, with 20 receiving 1 × 1010 PU and 20 receiving 1 × 1011 PU of cAd3-EBO S. 38 (95%) participants completed all follow-up visits. The cAd3-EBO S vaccine was well tolerated with no severe adverse events. The most common reactogenicity symptoms were pain or tenderness at the injection site (34 [85%] of 40), fatigue (29 [73%] of 40), and headache (26 [65%] of 40), and were mild to moderate in severity. Positive responses for glycoprotein-specific binding antibodies were induced by 2 weeks in 31 (78%) participants, increased to 34 (85%) participants by 4 weeks, and persisted to 48 weeks in 31 (82%) participants. Most participants developed glycoprotein-specific T-cell responses (20 [59%, 95% CI 41-75] of 34; six participants were removed from the T cell analysis after failing quality control parameters) by 4 weeks after vaccination, and neutralising titres against the cAd3 vector were also increased from baseline (90% inhibitory concentration of 47, 95% CI 30-73) to 4 weeks after vaccination (196, 125-308). INTERPRETATION: The cAd3-EBO S vaccine was safe at both doses, rapidly inducing immune responses in most participants after a single injection. The rapid onset and durability of the vaccine-induced antibodies make this vaccine a strong candidate for emergency deployment in Sudan Ebola virus outbreaks. FUNDING: National Institutes of Health via interagency agreement with Walter Reed Army Institute of Research.


Asunto(s)
Adenovirus de los Simios , Vacunas contra el Virus del Ébola , Ebolavirus , Fiebre Hemorrágica Ebola , Animales , Humanos , Adulto , Fiebre Hemorrágica Ebola/prevención & control , Pan troglodytes , Uganda , Sudán , Ebolavirus/genética , Anticuerpos Antivirales , Adenovirus de los Simios/genética , Adenoviridae/genética , Glicoproteínas , Inmunogenicidad Vacunal , Método Doble Ciego
9.
iScience ; 26(8): 107403, 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37554450

RESUMEN

Soluble HIV-1-envelope (Env) trimers elicit immune responses that target their solvent-exposed protein bases, the result of removing these trimers from their native membrane-bound context. To assess whether glycosylation could limit these base responses, we introduced sequons encoding potential N-linked glycosylation sites (PNGSs) into base-proximal regions. Expression and antigenic analyses indicated trimers bearing six-introduced PNGSs to have reduced base recognition. Cryo-EM analysis revealed trimers with introduced PNGSs to be prone to disassembly and introduced PNGS to be disordered. Protein-base and glycan-base trimers induced reciprocally symmetric ELISA responses, in which only a small fraction of the antibody response to glycan-base trimers recognized protein-base trimers and vice versa. EM polyclonal epitope mapping revealed glycan-base trimers -even those that were stable biochemically- to elicit antibodies that recognized disassembled trimers. Introduced glycans can thus mask the protein base but their introduction may yield neo-epitopes that dominate the immune response.

10.
Vaccine ; 41(35): 5201-5210, 2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37451877

RESUMEN

An enzyme linked immunosorbent assay (ELISA) method was developed to analyze the assembly of a tetravalent mosaic influenza nanoparticle (NP) vaccine, Flumos-v1, consisting of hemagglutinin trimers (HAT) from H1 (A/Idaho/07/2018), H3 (A/Perth/1008/2019), HBV (Vic-B/Colorado/06/2017) and HBY (Yam-B/Phuket/3073/2013) strains. The sandwich ELISA assay used lectin from Galanthus nivalis as a universal capture reagent for all HAT strains and specific monoclonal antibody (mAb) to detect corresponding hemagglutinin antigen. The mAb binding of HATs incorporated into NPs diverged from those for single HAT solutions, resulting in inaccurate quantitation of assembled HATs. An optimized zwittergent treatment was used to fully dissociate the influenza NP and aligned binding activities in each pair of single HAT and dissociated HAT from NP. The dissociated HATs were then quantified against their corresponding HAT standard solutions for three development lots of FluMos-v1 vaccine and the assembly ratio of all four HATs was calculated. The molar ratio of different HATs incorporated into this quadrivalent NP vaccine was consistent and determined as H3:H1: HBV: HBY âˆ¼ 1.00:0.92:0.96:0.87, which was close the expected 1:1:1:1 ratio and confirmed a proper assembling of multivalent NP.


Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Nanopartículas , Humanos , Gripe Humana/prevención & control , Hemaglutininas , Glicoproteínas Hemaglutininas del Virus de la Influenza , Ensayo de Inmunoadsorción Enzimática/métodos , Anticuerpos Monoclonales , Vacunas Combinadas , Anticuerpos Antivirales
11.
Sci Transl Med ; 15(692): eade4790, 2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-37075129

RESUMEN

Influenza vaccines could be improved by platforms inducing cross-reactive immunity. Immunodominance of the influenza hemagglutinin (HA) head in currently licensed vaccines impedes induction of cross-reactive neutralizing stem-directed antibodies. A vaccine without the variable HA head domain has the potential to focus the immune response on the conserved HA stem. This first-in-human dose-escalation open-label phase 1 clinical trial (NCT03814720) tested an HA stabilized stem ferritin nanoparticle vaccine (H1ssF) based on the H1 HA stem of A/New Caledonia/20/1999. Fifty-two healthy adults aged 18 to 70 years old enrolled to receive either 20 µg of H1ssF once (n = 5) or 60 µg of H1ssF twice (n = 47) with a prime-boost interval of 16 weeks. Thirty-five (74%) 60-µg dose participants received the boost, whereas 11 (23%) boost vaccinations were missed because of public health restrictions in the early stages of the COVID-19 pandemic. The primary objective of this trial was to evaluate the safety and tolerability of H1ssF, and the secondary objective was to evaluate antibody responses after vaccination. H1ssF was safe and well tolerated, with mild solicited local and systemic reactogenicity. The most common symptoms included pain or tenderness at the injection site (n = 10, 19%), headache (n = 10, 19%), and malaise (n = 6, 12%). We found that H1ssF elicited cross-reactive neutralizing antibodies against the conserved HA stem of group 1 influenza viruses, despite previous H1 subtype head-specific immunity. These responses were durable, with neutralizing antibodies observed more than 1 year after vaccination. Our results support this platform as a step forward in the development of a universal influenza vaccine.


Asunto(s)
COVID-19 , Vacunas contra la Influenza , Gripe Humana , Adolescente , Adulto , Anciano , Humanos , Persona de Mediana Edad , Adulto Joven , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Anticuerpos ampliamente neutralizantes , Glicoproteínas Hemaglutininas del Virus de la Influenza , Hemaglutininas , Pandemias
12.
J Am Soc Mass Spectrom ; 34(5): 813-819, 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37000420

RESUMEN

To capture the structure of assembled hemagglutinin (HA) nanoparticles at single-particle resolution, HA-specific antigen binding fragments (Fabs) were labeled by fluorescent (FLR) dyes as probes to highlight the HA trimers displayed on the assembled tetravalent HA nanoparticles for a qualitative localization microscopic study. The FLR dyes were conjugated to the Fabs through N-hydroxysuccinimide (NHS) ester mediated amine coupling chemistry. The labeling profile, including labeling ratio, distribution, and site-specific labeling occupancy, can affect the imaging results and introduce inconsistency. To evaluate the labeling profile so as to evaluate the labeling efficiency, a combination of intact mass measurement by MALDI-MS and peptide mapping through LC-MS/MS was implemented. At the intact molecular level, the labeling ratio and distribution were determined. Through peptide mapping, the labeled residues were identified and the corresponding site-specific labeling occupancy was measured. A systematic comparative investigation of four different FLR-labeled 1H01-Fabs (generated from H1 strain HA specific mAb 1H01) allowed accurate profiling of the labeling pattern. The data indicate that the labeling was site-specific and semiquantitative. This warrants the consistency of single-particle fluorescent imaging experiments and allows a further imaging characterization of the single nanoparticles.


Asunto(s)
Aminas , Hemaglutininas , Cromatografía Liquida , Espectrometría de Masas en Tándem , Colorantes
13.
Vaccine ; 41(15): 2534-2545, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-36906406

RESUMEN

This report describes an application of analytical high performance size exclusion chromatography with UV and Fluorescent detection (HPSEC-UV/FLR) method that enabled a bridging from research vaccine candidate discovery (His-tagged model) to clinical product development (Non-His-tagged molecules). HPSEC measurement can accurately determine the total trimer-to-pentamer molar ratio by either titration evaluation during the nanoparticle being assembled or dissociation during a well-formed nanoparticle being dis-assembled. Through experimental design with small sample consumptions, HPSEC can provide a quick determination on the nanoparticle assembling efficiency which can therefore guide the buffer optimization for an assembly, from His-tagged model nanoparticle, to non-His-tagged clinical development product. HPSEC has also discovered a difference in assembling efficiencies for various strains of HAx-dn5B with Pentamer-dn5A components, and different efficiencies for monovalent assembly vs. multivalent assembly. The present study demonstrates HPSEC as a pivotal tool to support the Flu Mosaic nanoparticle vaccine development from research to clinical production.


Asunto(s)
Vacunas contra la Influenza , Nanopartículas , Cromatografía en Gel , Factores de Tiempo
14.
Anal Methods ; 15(7): 896-900, 2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36723411

RESUMEN

A quadrivalent influenza nanoparticle vaccine (FluMos-v1) offers long-lasting protection against multiple influenza virus strains and is composed of four strains of hemagglutinin trimer (HAT) assembled around a pentamer core. Here we report an LC-MS/MS analytical development and validation method to measure the percentage of each HAT component in FluMos-v1.


Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Nanopartículas , Humanos , Vacunas contra la Influenza/química , Hemaglutininas , Gripe Humana/prevención & control , Cromatografía Liquida , Anticuerpos Antivirales , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Espectrometría de Masas en Tándem
15.
Lancet ; 401(10373): 294-302, 2023 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-36709074

RESUMEN

BACKGROUND: WHO has identified Marburg virus as an emerging virus requiring urgent vaccine research and development, particularly due to its recent emergence in Ghana. We report results from a first-in-human clinical trial evaluating a replication-deficient recombinant chimpanzee adenovirus type 3 (cAd3)-vectored vaccine encoding a wild-type Marburg virus Angola glycoprotein (cAd3-Marburg) in healthy adults. METHODS: We did a first-in-human, phase 1, open-label, dose-escalation trial of the cAd3-Marburg vaccine at the Walter Reed Army Institute of Research Clinical Trials Center in the USA. Healthy adults aged 18-50 years were assigned to receive a single intramuscular dose of cAd3-Marburg vaccine at either 1 × 1010 or 1 × 1011 particle units (pu). Primary safety endpoints included reactogenicity assessed for the first 7 days and all adverse events assessed for 28 days after vaccination. Secondary immunogenicity endpoints were assessment of binding antibody responses and T-cell responses against the Marburg virus glycoprotein insert, and assessment of neutralising antibody responses against the cAd3 vector 4 weeks after vaccination. This study is registered with ClinicalTrials.gov, NCT03475056. FINDINGS: Between Oct 9, 2018, and Jan 31, 2019, 40 healthy adults were enrolled and assigned to receive a single intramuscular dose of cAd3-Marburg vaccine at either 1 × 1010 pu (n=20) or 1 × 1011 pu (n=20). The cAd3-Marburg vaccine was safe, well tolerated, and immunogenic. All enrolled participants received cAd3-Marburg vaccine, with 37 (93%) participants completing follow-up visits; two (5%) participants moved from the area and one (3%) was lost to follow-up. No serious adverse events related to vaccination occurred. Mild to moderate reactogenicity was observed after vaccination, with symptoms of injection site pain and tenderness (27 [68%] of 40 participants), malaise (18 [45%] of 40 participants), headache (17 [43%] of 40 participants), and myalgia (14 [35%] of 40 participants) most commonly reported. Glycoprotein-specific antibodies were induced in 38 (95%) of 40 participants 4 weeks after vaccination, with geometric mean titres of 421 [95% CI 209-846] in the 1 × 1010 pu group and 545 [276-1078] in the 1 × 1011 pu group, and remained significantly elevated at 48 weeks compared with baseline titres (39 [95% CI 13-119] in the 1 ×1010 pu group and 27 [95-156] in the 1 ×1011 pu group; both p<0·0001). T-cell responses to the glycoprotein insert and neutralising responses against the cAd3 vector were also increased at 4 weeks after vaccination. INTERPRETATION: This first-in-human trial of this cAd3-Marburg vaccine showed the agent is safe and immunogenic, with a safety profile similar to previously tested cAd3-vectored filovirus vaccines. 95% of participants produced a glycoprotein-specific antibody response at 4 weeks after a single vaccination, which remained in 70% of participants at 48 weeks. These findings represent a crucial step in the development of a vaccine for emergency deployment against a re-emerging pathogen that has recently expanded its reach to new regions. FUNDING: National Institutes of Health.


Asunto(s)
Adenovirus de los Simios , Marburgvirus , Animales , Adulto , Humanos , Pan troglodytes , Anticuerpos Antivirales , Vacunas Sintéticas/efectos adversos , Adenoviridae , Glicoproteínas , Método Doble Ciego
16.
Vaccines (Basel) ; 10(11)2022 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-36423012

RESUMEN

Conjugate-vaccine immunogens require three components: a carrier protein, an antigen, and a crosslinker, capable of coupling antigen to carrier protein, while preserving both T-cell responses from carrier protein and B-cell responses from antigen. We previously showed that the N-terminal eight residues of the HIV-1 fusion peptide (FP8) as an antigen could prime for broad cross-clade neutralizing responses, that recombinant heavy chain of tetanus toxin (rTTHC) as a carrier protein provided optimal responses, and that choice of crosslinker could impact both antigenicity and immunogenicity. Here, we delve more deeply into the impact of varying the linker between FP8 and rTTHC. In specific, we assessed the physical properties, the antigenicity, and the immunogenicity of conjugates for crosslinkers ranging in spacer-arm length from 1.5 to 95.2 Å, with varying hydrophobicity and crosslinking-functional groups. Conjugates coupled with different degrees of multimerization and peptide-to-rTTHC stoichiometry, but all were well recognized by HIV-fusion-peptide-directed antibodies VRC34.01, VRC34.05, PGT151, and ACS202 except for the conjugate with the longest linker (24-PEGylated SMCC; SM(PEG)24), which had lower affinity for ACS202, as did the conjugate with the shortest linker (succinimidyl iodoacetate; SIA), which also had the lowest peptide-to-rTTHC stoichiometry. Murine immunizations testing seven FP8-rTTHC conjugates elicited fusion-peptide-directed antibody responses, with SIA- and SM(PEG)24-linked conjugates eliciting lower responses than the other five conjugates. After boosting with prefusion-closed envelope trimers from strains BG505 clade A and consensus clade C, trimer-directed antibody-binding responses were lower for the SIA-linked conjugate; elicited neutralizing responses were similar, however, though statistically lower for the SM(PEG)24-linked conjugate, when tested against a strain especially sensitive to fusion-peptide-directed responses. Overall, correlation analyses revealed the immunogenicity of FP8-rTTHC conjugates to be negatively impacted by hydrophilicity and extremes of length or low peptide-carrier stoichiometry, but robust to other linker parameters, with several commonly used crosslinkers yielding statistically indistinguishable serological results.

17.
Biotechnol Prog ; 38(6): e3296, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36054677

RESUMEN

Broadly neutralizing antibody (bNAb) CAP256-VRC26.25 (abbreviated CAP256LS), a human IgGI monoclonal antibody targeting the V1V2 site of the HIV-1 envelope, has demonstrated high therapeutic potential as a broadly neutralizing monoclonal antibody against HIV-1. During the process development, a heavy chain fragmentation (clipping) was observed, that led to a relative potency reduction. In this report, we highlighted a series of process and product mitigation strategies deployed to advance this product. We have detailed how analytical characterization tools, especially the microchip reduced capillary gel electrophoresis (CGE-SDS), played a pivotal role in identifying the development issues and in providing measurements to guide implementation of mitigation strategies.


Asunto(s)
Anticuerpos Anti-VIH , VIH-1 , Humanos , Anticuerpos ampliamente neutralizantes , Anticuerpos Neutralizantes , Anticuerpos Monoclonales
18.
N Engl J Med ; 387(5): 397-407, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35921449

RESUMEN

BACKGROUND: New approaches for the prevention and elimination of malaria, a leading cause of illness and death among infants and young children globally, are needed. METHODS: We conducted a phase 1 clinical trial to assess the safety and pharmacokinetics of L9LS, a next-generation antimalarial monoclonal antibody, and its protective efficacy against controlled human malaria infection in healthy adults who had never had malaria or received a vaccine for malaria. The participants received L9LS either intravenously or subcutaneously at a dose of 1 mg, 5 mg, or 20 mg per kilogram of body weight. Within 2 to 6 weeks after the administration of L9LS, both the participants who received L9LS and the control participants underwent controlled human malaria infection in which they were exposed to mosquitoes carrying Plasmodium falciparum (3D7 strain). RESULTS: No safety concerns were identified. L9LS had an estimated half-life of 56 days, and it had dose linearity, with the highest mean (±SD) maximum serum concentration (Cmax) of 914.2±146.5 µg per milliliter observed in participants who had received 20 mg per kilogram intravenously and the lowest mean Cmax of 41.5±4.7 µg per milliliter observed in those who had received 1 mg per kilogram intravenously; the mean Cmax was 164.8±31.1 in the participants who had received 5 mg per kilogram intravenously and 68.9±22.3 in those who had received 5 mg per kilogram subcutaneously. A total of 17 L9LS recipients and 6 control participants underwent controlled human malaria infection. Of the 17 participants who received a single dose of L9LS, 15 (88%) were protected after controlled human malaria infection. Parasitemia did not develop in any of the participants who received 5 or 20 mg per kilogram of intravenous L9LS. Parasitemia developed in 1 of 5 participants who received 1 mg per kilogram intravenously, 1 of 5 participants who received 5 mg per kilogram subcutaneously, and all 6 control participants through 21 days after the controlled human malaria infection. Protection conferred by L9LS was seen at serum concentrations as low as 9.2 µg per milliliter. CONCLUSIONS: In this small trial, L9LS administered intravenously or subcutaneously protected recipients against malaria after controlled infection, without evident safety concerns. (Funded by the National Institute of Allergy and Infectious Diseases; VRC 614 ClinicalTrials.gov number, NCT05019729.).


Asunto(s)
Anticuerpos Monoclonales , Malaria , Administración Cutánea , Administración Intravenosa , Adulto , Animales , Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Monoclonales/efectos adversos , Anticuerpos Monoclonales/farmacocinética , Niño , Preescolar , Humanos , Malaria/prevención & control , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/prevención & control , Parasitemia/parasitología , Plasmodium falciparum
19.
EClinicalMedicine ; 48: 101477, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35783486

RESUMEN

Background: Advances in therapeutic drugs have increased life-expectancies for HIV-infected individuals, but the need for an effective vaccine remains. We assessed safety and immunogenicity of HIV-1 vaccine, Trimer 4571 (BG505 DS-SOSIP.664) adjuvanted with aluminum hydroxide (alum), in HIV-negative adults. Methods: We conducted a phase I, randomized, open-label, dose-escalation trial at the National Institutes of Health Clinical Center in Bethesda, MD, USA. Eligible participants were HIV-negative, healthy adults between 18-50 years. Participants were randomized 1:1 to receive Trimer 4571 adjuvanted with 500 mcg alum by either the subcutaneous (SC) or intramuscular (IM) route at weeks 0, 8, and 20 in escalating doses of 100 mcg or 500 mcg. The primary objectives were to evaluate the safety and tolerability of Trimer 4571 with a secondary objective of evaluating vaccine-induced antibody responses. The primary and safety endpoints were evaluated in all participants who received at least one dose of Trimer 4571. Trial results were summarized using descriptive statistics. This trial is registered at ClinicalTrials.gov, NCT03783130. Findings: Between March 7 and September 11, 2019, 16 HIV-negative participants were enrolled, including six (38%) males and ten (62%) females. All participants received three doses of Trimer 4571. Solicited reactogenicity was mild to moderate in severity, with one isolated instance of severe injection site redness (6%) following a third 500 mcg SC administration. The most commonly reported solicited symptoms included mild injection site tenderness in 14 (88%) and mild myalgia in six (38%) participants. The most frequent unsolicited adverse event attributed to vaccination was mild injection site pruritus in six (38%) participants. Vaccine-induced seropositivity occurred in seven (44%) participants and resolved in all but one (6%). No serious adverse events occurred. Trimer 4571-specific binding antibodies were detected in all groups two weeks after regimen completion, primarily focused on the glycan-free trimer base. Neutralizing antibody activity was limited to the 500 mcg dose groups. Interpretation: Trimer 4571 was safe, well tolerated, and immunogenic in this first-in-human trial. While this phase 1 trial is limited in size, our results inform and support further evaluation of prefusion-stabilized HIV-1 envelope trimers as a component of vaccine design strategies to generate broadly neutralizing antibodies against HIV-1. Funding: Intramural Research Program of the Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health.

20.
Sci Rep ; 12(1): 8433, 2022 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-35589938

RESUMEN

CAP256V2LS, a broadly neutralizing monoclonal antibody (bNAb), is being pursued as a promising drug for HIV-1 prevention. The total level of tyrosine-O-sulfation, a post-translational modification, was known to play a key role for antibody biological activity. More importantly, here wedescribe for the first time the significance of the tyrosine-O-sulfation proteoforms. We developed a hydrophobic interaction chromatography (HIC) method to separate and quantify different sulfation proteoforms, which led to the direct functionality assessment of tyrosine-sulfated species. The fully sulfated (4-SO3) proteoform demonstrated the highest in vitro relative antigen binding potency and neutralization efficiency against a panel of HIV-1 viruses. Interestingly, highly variable levels of 4-SO3 were produced by different clonal CHO cell lines, which helped the bNAb process development towards production of a highly potent CAP256V2LS clinical product with high 4-SO3 proteoform. This study presents powerful insight for any biotherapeutic protein development where sulfation may play an important role in product efficacy.


Asunto(s)
VIH-1 , Animales , Anticuerpos Monoclonales/farmacología , Anticuerpos Neutralizantes , Anticuerpos ampliamente neutralizantes , Células CHO , Cricetinae , Anticuerpos Anti-VIH , Tirosina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...