Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Nucleic Acids Res ; 43(3): 1945-54, 2015 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-25567985

RESUMEN

Genetically modified organisms (GMOs) are commonly used to produce valuable compounds in closed industrial systems. However, their emerging applications in open clinical or environmental settings require enhanced safety and security measures. Intrinsic biocontainment, the creation of bacterial hosts unable to survive in natural environments, remains a major unsolved biosafety problem. We developed a new biocontainment strategy containing overlapping 'safeguards'-engineered riboregulators that tightly control expression of essential genes, and an engineered addiction module based on nucleases that cleaves the host genome-to restrict viability of Escherichia coli cells to media containing exogenously supplied synthetic small molecules. These multilayered safeguards maintain robust growth in permissive conditions, eliminate persistence and limit escape frequencies to <1.3 × 10(-12). The staged approach to safeguard implementation revealed mechanisms of escape and enabled strategies to overcome them. Our safeguarding strategy is modular and employs conserved mechanisms that could be extended to clinically or industrially relevant organisms and undomesticated species.


Asunto(s)
Escherichia coli/genética , Organismos Modificados Genéticamente/crecimiento & desarrollo , Clonación Molecular , Técnicas de Cocultivo , Medios de Cultivo , Escherichia coli/crecimiento & desarrollo , Recombinación Genética
3.
Nature ; 518(7537): 89-93, 2015 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-25607356

RESUMEN

Genetically modified organisms (GMOs) are increasingly used in research and industrial systems to produce high-value pharmaceuticals, fuels and chemicals. Genetic isolation and intrinsic biocontainment would provide essential biosafety measures to secure these closed systems and enable safe applications of GMOs in open systems, which include bioremediation and probiotics. Although safeguards have been designed to control cell growth by essential gene regulation, inducible toxin switches and engineered auxotrophies, these approaches are compromised by cross-feeding of essential metabolites, leaked expression of essential genes, or genetic mutations. Here we describe the construction of a series of genomically recoded organisms (GROs) whose growth is restricted by the expression of multiple essential genes that depend on exogenously supplied synthetic amino acids (sAAs). We introduced a Methanocaldococcus jannaschii tRNA:aminoacyl-tRNA synthetase pair into the chromosome of a GRO derived from Escherichia coli that lacks all TAG codons and release factor 1, endowing this organism with the orthogonal translational components to convert TAG into a dedicated sense codon for sAAs. Using multiplex automated genome engineering, we introduced in-frame TAG codons into 22 essential genes, linking their expression to the incorporation of synthetic phenylalanine-derived amino acids. Of the 60 sAA-dependent variants isolated, a notable strain harbouring three TAG codons in conserved functional residues of MurG, DnaA and SerS and containing targeted tRNA deletions maintained robust growth and exhibited undetectable escape frequencies upon culturing ∼10(11) cells on solid media for 7 days or in liquid media for 20 days. This is a significant improvement over existing biocontainment approaches. We constructed synthetic auxotrophs dependent on sAAs that were not rescued by cross-feeding in environmental growth assays. These auxotrophic GROs possess alternative genetic codes that impart genetic isolation by impeding horizontal gene transfer and now depend on the use of synthetic biochemical building blocks, advancing orthogonal barriers between engineered organisms and the environment.


Asunto(s)
Aminoácidos/síntesis química , Aminoácidos/farmacología , Contención de Riesgos Biológicos/métodos , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Viabilidad Microbiana/efectos de los fármacos , Biología Sintética/métodos , Aminoácidos/química , Aminoácidos/metabolismo , Aminoacil-ARNt Sintetasas/genética , Aminoacil-ARNt Sintetasas/metabolismo , Dominio Catalítico/genética , Codón/genética , Medios de Cultivo/química , Medios de Cultivo/farmacología , Ambiente , Escherichia coli/citología , Escherichia coli/metabolismo , Proteínas de Escherichia coli/biosíntesis , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Evolución Molecular , Transferencia de Gen Horizontal/genética , Genes Esenciales/genética , Código Genético/genética , Ingeniería Genética/métodos , Genoma Bacteriano/genética , Viabilidad Microbiana/genética , Datos de Secuencia Molecular , Organismos Modificados Genéticamente/genética , Organismos Modificados Genéticamente/crecimiento & desarrollo , Organismos Modificados Genéticamente/metabolismo , Factores de Terminación de Péptidos/genética , Fenilalanina/química , Fenilalanina/metabolismo , Multimerización de Proteína/genética , ARN de Transferencia/genética
4.
Nat Protoc ; 9(10): 2301-16, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25188632

RESUMEN

Multiplex automated genome engineering (MAGE) is a powerful technology for in vivo genome editing that uses synthetic single-stranded DNA (ssDNA) to introduce targeted modifications directly into the Escherichia coli chromosome. MAGE is a cyclical process that involves transformation of ssDNA (by electroporation) followed by outgrowth, during which bacteriophage homologous recombination proteins mediate annealing of ssDNAs to their genomic targets. By iteratively introducing libraries of mutagenic ssDNAs targeting multiple sites, MAGE can generate combinatorial genetic diversity in a cell population. Alternatively, MAGE can introduce precise mutant alleles at many loci for genome-wide editing or for recoding projects that are not possible with other methods. In recent technological advances, MAGE has been improved by strain modifications and selection techniques that enhance allelic replacement. This protocol describes the manual execution of MAGE wherein each cycle takes ≈ 2.5 h, which, if carried out by two people, allows ≈ 10 continuous cycles of MAGE-based mutagenesis per day.


Asunto(s)
Biblioteca de Genes , Genoma Bacteriano , Genómica/métodos , Alelos , ADN de Cadena Simple , Escherichia coli/genética , Escherichia coli K12/genética , Ingeniería Genética/métodos , Variación Genética , Mutagénesis Sitio-Dirigida
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...