RESUMEN
BACKGROUND: An altered gut microbiome characterized by reduced abundance of butyrate producing bacteria and reduced gene richness is associated with type 2 diabetes (T2D). An important complication of T2D is increased risk of cognitive impairment and dementia. The biguanide metformin is a commonly prescribed medication for the control of T2D and metformin treatment has been associated with a significant reduction in the risk of dementia and improved cognition, particularly in people with T2D. AIM: To investigate the associations of metformin use with cognition exploring potential mechanisms by analyzing the gut microbiome and plasma metabolome using shotgun metagenomics and HPLC-ESI-MS/MS, respectively. METHODS: We explored two independent cohorts: an observational study (Aging Imageomics) and a phase IV, randomized, double-blind, parallel-group, randomized pilot study (MEIFLO). From the two studies, we analyzed four study groups: (1) individuals with no documented medical history or medical treatment (n = 172); (2) people with long-term T2D on metformin monotherapy (n = 134); (3) people with long-term T2D treated with oral hypoglycemic agents other than metformin (n = 45); (4) a newly diagnosed T2D subjects on metformin monotherapy (n = 22). Analyses were also performed stratifying by sex. RESULTS: Several bacterial species belonging to the Proteobacteria (Escherichia coli) and Verrucomicrobia (Akkermansia muciniphila) phyla were positively associated with metformin treatment, while bacterial species belonging to the Firmicutes phylum (Romboutsia timonensis, Romboutsia ilealis) were negatively associated. Due to the consistent increase in A. muciniphila and decrease in R.ilealis in people with T2D subjects treated with metformin, we investigated the association between this ratio and cognition. In the entire cohort of metformin-treated T2D subjects, the A.muciniphila/R.ilealis ratio was not significantly associated with cognitive test scores. However, after stratifying by sex, the A.muciniphila/R. ilealis ratio was significantly and positively associated with higher memory scores and improved memory in men. Metformin treatment was associated with an enrichment of microbial pathways involved in the TCA cycle, and butanoate, arginine, and proline metabolism in both cohorts. The bacterial genes involved in arginine metabolism, especially in production of glutamate (astA, astB, astC, astD, astE, putA), were enriched following metformin intake. In agreement, in the metabolomics analysis, metformin treatment was strongly associated with the amino acid proline, a metabolite involved in the metabolism of glutamate. CONCLUSIONS: The beneficial effects of metformin may be mediated by changes in the composition of the gut microbiota and microbial-host-derived co-metabolites.
Asunto(s)
Cognición , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Hipoglucemiantes , Metaboloma , Metformina , Humanos , Metformina/uso terapéutico , Metformina/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Masculino , Metaboloma/efectos de los fármacos , Femenino , Anciano , Diabetes Mellitus Tipo 2/microbiología , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Hipoglucemiantes/uso terapéutico , Hipoglucemiantes/farmacología , Cognición/efectos de los fármacos , Método Doble Ciego , Persona de Mediana Edad , Proyectos PilotoRESUMEN
OBJECTIVES: Iron is important for neurogenesis, synaptic development, and neurotransmitter synthesis. Serum ferritin (SF) is a reliable marker for assessing iron stores. Therefore, we evaluated the cognitive function associated with SF levels. We also assessed brain iron content using R2* Magnetic Resonance Imaging (MRI) and its association with SF levels. DESIGN: Data from three cross-sectional observational studies were used. Aging Imageomics (n = 1030) was conducted on aged subjects. Health Imageomics (n = 971) and IR0NMET (n = 175) were conducted in middle-aged subjects. SETTING AND PARTICIPANTS: Participants were enrolled at Dr. Josep Trueta University Hospital facilities. The three cohorts included a total of 2176 subjects (mean age, 52 years; 48% men). MEASUREMENTS: SF levels were measured by standard laboratory methods. Total Digits Span (TDS), and Phonemic Verbal Fluency (PVF) were used to assess executive function. Language function was assessed by semantic verbal fluency (SVF), attention by the Symbol Digit Modalities Test, and memory by the Memory Binding Tests - Total Free Recall and Total Delayed Free Recall. MRI was used to assess the iron content of the brain by R2*. RESULTS: In subjects aged 65 years or older, SF levels were associated with increased TDS (ß = 0.003, p = 0.02), PVF (ß = 0.004, p = 0.01), and SVF (ß = 0.004, p = 0.002) scores. After stratification by sex, these findings were significant only in men, where SF was associated with increased TDS (ß = 0.003, p = 0.01), PVF (ß = 0.004, p = 0.03), and SVF (ß = 0.004, p = 0.009) scores. In middle-aged subjects, SF was also associated with increased SVF scores (ß = 0.005, p = 0.011). Lastly, in men, SF levels were negatively associated with R2*, a surrogate marker of brain iron content, in both the left frontal inferior opercular area (r = -0.41, p = 0.005) and the right frontal inferior opercular area (r = -0.44, p = 0.002). CONCLUSIONS: SF is significantly and positively associated with cognition. In older people with low SF levels, iron supplementation may be a promising therapy to improve cognition.