Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 7(1): 425, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589539

RESUMEN

Treatment of pneumococcal infections is limited by antibiotic resistance and exacerbation of disease by bacterial lysis releasing pneumolysin toxin and other inflammatory factors. We identified a previously uncharacterized peptide in the Klebsiella pneumoniae secretome, which enters Streptococcus pneumoniae via its AmiA-AliA/AliB permease. Subsequent downregulation of genes for amino acid biosynthesis and peptide uptake was associated with reduction of pneumococcal growth in defined medium and human cerebrospinal fluid, irregular cell shape, decreased chain length and decreased genetic transformation. The bacteriostatic effect was specific to S. pneumoniae and Streptococcus pseudopneumoniae with no effect on Streptococcus mitis, Haemophilus influenzae, Staphylococcus aureus or K. pneumoniae. Peptide sequence and length were crucial to growth suppression. The peptide reduced pneumococcal adherence to primary human airway epithelial cell cultures and colonization of rat nasopharynx, without toxicity. We identified a peptide with potential as a therapeutic for pneumococcal diseases suppressing growth of multiple clinical isolates, including antibiotic resistant strains, while avoiding bacterial lysis and dysbiosis.


Asunto(s)
Infecciones Neumocócicas , Streptococcus pneumoniae , Ratas , Animales , Humanos , Klebsiella pneumoniae , Proteínas de Transporte de Membrana/metabolismo , Nasofaringe/microbiología , Infecciones Neumocócicas/microbiología , Péptidos/farmacología , Péptidos/metabolismo
2.
Mol Microbiol ; 121(1): 98-115, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38041395

RESUMEN

Bacterial cell division requires the coordinated assembly and disassembly of a large protein complex called the divisome; however, the exact role of molecular chaperones in this critical process remains unclear. We here provide genetic evidence that ClpX unfoldase activity is a determinant for proper coordination of bacterial cell division by showing the growth defect of a Staphylococcus aureus clpX mutant is rescued by a spontaneously acquired G325V substitution in the ATP-binding domain of the essential FtsA cell division protein. The polymerization state of FtsA is thought to control initiation of bacterial septum synthesis and, while restoring the aberrant FtsA dynamics in clpX cells, the FtsAG325V variant displayed reduced ability to interact with itself and other cell division proteins. In wild-type cells, the ftsAG325V allele shared phenotypes with Escherichia coli superfission ftsA mutants and accelerated the cell cycle, increased the risk of daughter cell lysis, and conferred sensitivity to heat and antibiotics inhibiting cell wall synthesis. Strikingly, lethality was mitigated by spontaneous mutations that inactivate ClpX. Taken together, our results suggest that ClpX promotes septum synthesis by antagonizing FtsA interactions and illuminates the critical role of a protein unfoldase in coordinating bacterial cell division.


Asunto(s)
Proteínas de Escherichia coli , Infecciones Estafilocócicas , Humanos , Proteínas Bacterianas/metabolismo , Endopeptidasa Clp/genética , Endopeptidasa Clp/metabolismo , Staphylococcus aureus/metabolismo , División Celular/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/genética , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo
3.
bioRxiv ; 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37398100

RESUMEN

Genetic interaction networks can help identify functional connections between genes and pathways, which can be leveraged to establish (new) gene function, drug targets, and fill pathway gaps. Since there is no optimal tool that can map genetic interactions across many different bacterial strains and species, we develop CRISPRi-TnSeq, a genome-wide tool that maps genetic interactions between essential genes and nonessential genes through the knockdown of a targeted essential gene (CRISPRi) and the simultaneous knockout of individual nonessential genes (Tn-Seq). CRISPRi-TnSeq thereby identifies, on a genome-wide scale, synthetic and suppressor-type relationships between essential and nonessential genes, enabling the construction of essential-nonessential genetic interaction networks. To develop and optimize CRISPRi-TnSeq, CRISPRi strains were obtained for 13 essential genes in Streptococcus pneumoniae, involved in different biological processes including metabolism, DNA replication, transcription, cell division and cell envelope synthesis. Transposon-mutant libraries were constructed in each strain enabling screening of ∼24,000 gene-gene pairs, which led to the identification of 1,334 genetic interactions, including 754 negative and 580 positive genetic interactions. Through extensive network analyses and validation experiments we identify a set of 17 pleiotropic genes, of which a subset tentatively functions as genetic capacitors, dampening phenotypic outcomes and protecting against perturbations. Furthermore, we focus on the relationships between cell wall synthesis, integrity and cell division and highlight: 1) how essential gene knockdown can be compensated by rerouting flux through nonessential genes in a pathway; 2) the existence of a delicate balance between Z-ring formation and localization, and septal and peripheral peptidoglycan (PG) synthesis to successfully accomplish cell division; 3) the control of c-di-AMP over intracellular K + and turgor, and thereby modulation of the cell wall synthesis machinery; 4) the dynamic nature of cell wall protein CozEb and its effect on PG synthesis, cell shape morphology and envelope integrity; 5) functional dependency between chromosome decatenation and segregation, and the critical link with cell division, and cell wall synthesis. Overall, we show that CRISPRi-TnSeq uncovers genetic interactions between closely functionally linked genes and pathways, as well as disparate genes and pathways, highlighting pathway dependencies and valuable leads for gene function. Importantly, since both CRISPRi and Tn-Seq are widely used tools, CRISPRi-TnSeq should be relatively easy to implement to construct genetic interaction networks across many different microbial strains and species.

4.
Nat Microbiol ; 6(9): 1175-1187, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34373624

RESUMEN

Most bacteria replicate and segregate their DNA concomitantly while growing, before cell division takes place. How bacteria synchronize these different cell cycle events to ensure faithful chromosome inheritance by daughter cells is poorly understood. Here, we identify Cell Cycle Regulator protein interacting with FtsZ (CcrZ) as a conserved and essential protein in pneumococci and related Firmicutes such as Bacillus subtilis and Staphylococcus aureus. CcrZ couples cell division with DNA replication by controlling the activity of the master initiator of DNA replication, DnaA. The absence of CcrZ causes mis-timed and reduced initiation of DNA replication, which subsequently results in aberrant cell division. We show that CcrZ from Streptococcus pneumoniae interacts directly with the cytoskeleton protein FtsZ, which places CcrZ in the middle of the newborn cell where the DnaA-bound origin is positioned. This work uncovers a mechanism for control of the bacterial cell cycle in which CcrZ controls DnaA activity to ensure that the chromosome is replicated at the right time during the cell cycle.


Asunto(s)
Proteínas Bacterianas/metabolismo , Ciclo Celular , Proteínas del Citoesqueleto/metabolismo , Replicación del ADN , Streptococcus pneumoniae/citología , Streptococcus pneumoniae/metabolismo , Bacillus subtilis/citología , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/genética , Proteínas del Citoesqueleto/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Unión Proteica , Streptococcus pneumoniae/genética
5.
Proc Natl Acad Sci U S A ; 117(44): 27608-27619, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33087560

RESUMEN

Streptococcus pneumoniae can cause disease in various human tissues and organs, including the ear, the brain, the blood, and the lung, and thus in highly diverse and dynamic environments. It is challenging to study how pneumococci control virulence factor expression, because cues of natural environments and the presence of an immune system are difficult to simulate in vitro. Here, we apply synthetic biology methods to reverse-engineer gene expression control in S. pneumoniae A selection platform is described that allows for straightforward identification of transcriptional regulatory elements out of combinatorial libraries. We present TetR- and LacI-regulated promoters that show expression ranges of four orders of magnitude. Based on these promoters, regulatory networks of higher complexity are assembled, such as logic AND gates and IMPLY gates. We demonstrate single-copy genome-integrated toggle switches that give rise to bimodal population distributions. The tools described here can be used to mimic complex expression patterns, such as the ones found for pneumococcal virulence factors. Indeed, we were able to rewire gene expression of the capsule operon, the main pneumococcal virulence factor, to be externally inducible (YES gate) or to act as an IMPLY gate (only expressed in absence of inducer). Importantly, we demonstrate that these synthetic gene-regulatory networks are functional in an influenza A virus superinfection murine model of pneumonia, paving the way for in vivo investigations of the importance of gene expression control on the pathogenicity of S. pneumoniae.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Infecciones Oportunistas/microbiología , Neumonía Neumocócica/microbiología , Neumonía Viral/virología , Streptococcus pneumoniae/patogenicidad , Sobreinfección/microbiología , Animales , Proteínas Bacterianas/genética , Modelos Animales de Enfermedad , Redes Reguladoras de Genes , Genes Sintéticos/genética , Humanos , Virus de la Influenza A/patogenicidad , Masculino , Ratones , Nasofaringe/microbiología , Operón/genética , Infecciones Oportunistas/complicaciones , Neumonía Neumocócica/complicaciones , Neumonía Viral/complicaciones , Regiones Promotoras Genéticas/genética , Streptococcus pneumoniae/genética , Sobreinfección/complicaciones , Biología Sintética/métodos , Factores de Transcripción/metabolismo , Factores de Virulencia/metabolismo
6.
Front Microbiol ; 10: 1942, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31551943

RESUMEN

Protein phosphorylation is a key post-translational modification required for many cellular functions of the bacterial cell. Recently, we identified a new protein-kinase, named UbK, in Bacillus subtilis that belongs to a new family of protein-kinases widespread in bacteria. In this study, we analyze the function of UbK in Streptococcus pneumoniae. We show that UbK displays a tyrosine-kinase activity and autophosphorylates on a unique tyrosine in vivo. To get insights into its cellular role, we constructed a set of pneumococcal ubk mutants. Using conventional and electron microscopy, we show that the ubk deficient strain, as well as an ubk catalytic dead mutant, display both severe cell-growth and cell-morphology defects. The same defects are observed with a mutant mimicking permanent phosphorylation of UbK whereas they are not detected for a mutant mimicking defective autophosphorylation of UbK. Moreover, we find that UbK phosphorylation promotes its ability to hydrolyze ATP. These observations show that the hydrolysis of ATP by UbK serves not only for its autophosphorylation but also for a distinct purpose essential for the optimal cell growth and cell-morphogenesis of the pneumococcus. We thus propose a model in which the autophosphorylation/dephosphorylation of UbK regulates its cellular function through a negative feedback loop.

7.
PLoS Pathog ; 15(9): e1008044, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31518377

RESUMEN

ß-lactam antibiotics interfere with cross-linking of the bacterial cell wall, but the killing mechanism of this important class of antibiotics is not fully understood. Serendipitously we found that sub-lethal doses of ß-lactams rescue growth and prevent spontaneous lysis of Staphylococcus aureus mutants lacking the widely conserved chaperone ClpX, and we reasoned that a better understanding of the clpX phenotypes could provide novel insights into the downstream effects of ß-lactam binding to the PBP targets. Super-resolution imaging revealed that clpX cells display aberrant septum synthesis, and initiate daughter cell separation prior to septum completion at 30°C, but not at 37°C, demonstrating that ClpX becomes critical for coordinating the S. aureus cell cycle as the temperature decreases. FtsZ localization and dynamics were not affected in the absence of ClpX, suggesting that ClpX affects septum formation and autolytic activation downstream of Z-ring formation. Interestingly, oxacillin antagonized the septum progression defects of clpX cells and prevented lysis of prematurely splitting clpX cells. Strikingly, inhibitors of wall teichoic acid (WTA) biosynthesis that work synergistically with ß-lactams to kill MRSA synthesis also rescued growth of the clpX mutant, as did genetic inactivation of the gene encoding the septal autolysin, Sle1. Taken together, our data support a model in which Sle1 causes premature splitting and lysis of clpX daughter cells unless Sle1-dependent lysis is antagonized by ß-lactams or by inhibiting an early step in WTA biosynthesis. The finding that ß-lactams and inhibitors of WTA biosynthesis specifically prevent lysis of a mutant with dysregulated autolytic activity lends support to the idea that PBPs and WTA biosynthesis play an important role in coordinating cell division with autolytic splitting of daughter cells, and that ß-lactams do not kill S. aureus simply by weakening the cell wall.


Asunto(s)
Proteínas Bacterianas/fisiología , Endopeptidasa Clp/fisiología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/fisiología , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bacteriólisis/efectos de los fármacos , Bacteriólisis/fisiología , Pared Celular/efectos de los fármacos , Pared Celular/metabolismo , Proteínas del Citoesqueleto/metabolismo , Endopeptidasa Clp/genética , Humanos , Modelos Biológicos , Mutación , Oxacilina/farmacología , Staphylococcus aureus/genética , Ácidos Teicoicos/biosíntesis , Tunicamicina/farmacología , beta-Lactamas/farmacología
8.
Mol Microbiol ; 112(4): 1116-1130, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31290194

RESUMEN

Inhibition of cell division is critical for viability under DNA-damaging conditions. DNA damage induces the SOS response that in bacteria inhibits cell division while repairs are being made. In coccoids, such as the human pathogen, Staphylococcus aureus, this process remains poorly studied. Here, we identify SosA as the staphylococcal SOS-induced cell division inhibitor. Overproduction of SosA inhibits cell division, while sosA inactivation sensitizes cells to genotoxic stress. SosA is a small, predicted membrane protein with an extracellular C-terminal domain in which point mutation of residues that are conserved in staphylococci and major truncations abolished the inhibitory activity. In contrast, a minor truncation led to SosA accumulation and a strong cell division inhibitory activity, phenotypically similar to expression of wild-type SosA in a CtpA membrane protease mutant. This suggests that the extracellular C-terminus of SosA is required both for cell division inhibition and for turnover of the protein. Microscopy analysis revealed that SosA halts cell division and synchronizes the cell population at a point where division proteins such as FtsZ and EzrA are localized at midcell, and the septum formation is initiated but unable to progress to closure. Thus, our findings show that SosA is central in cell division regulation in staphylococci.


Asunto(s)
División Celular/genética , División Celular/fisiología , Respuesta SOS en Genética/fisiología , Proteínas Bacterianas/metabolismo , Proteínas del Citoesqueleto/metabolismo , Daño del ADN/genética , Daño del ADN/fisiología , Proteínas de la Membrana/metabolismo , Respuesta SOS en Genética/genética , Infecciones Estafilocócicas/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo
9.
Mol Syst Biol ; 13(5): 931, 2017 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-28490437

RESUMEN

Genome-wide screens have discovered a large set of essential genes in the opportunistic human pathogen Streptococcus pneumoniae However, the functions of many essential genes are still unknown, hampering vaccine development and drug discovery. Based on results from transposon sequencing (Tn-seq), we refined the list of essential genes in S. pneumoniae serotype 2 strain D39. Next, we created a knockdown library targeting 348 potentially essential genes by CRISPR interference (CRISPRi) and show a growth phenotype for 254 of them (73%). Using high-content microscopy screening, we searched for essential genes of unknown function with clear phenotypes in cell morphology upon CRISPRi-based depletion. We show that SPD_1416 and SPD_1417 (renamed to MurT and GatD, respectively) are essential for peptidoglycan synthesis, and that SPD_1198 and SPD_1197 (renamed to TarP and TarQ, respectively) are responsible for the polymerization of teichoic acid (TA) precursors. This knowledge enabled us to reconstruct the unique pneumococcal TA biosynthetic pathway. CRISPRi was also employed to unravel the role of the essential Clp-proteolytic system in regulation of competence development, and we show that ClpX is the essential ATPase responsible for ClpP-dependent repression of competence. The CRISPRi library provides a valuable tool for characterization of pneumococcal genes and pathways and revealed several promising antibiotic targets.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Regulación Bacteriana de la Expresión Génica , Genes Esenciales , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Streptococcus pneumoniae/genética , Proteínas Bacterianas/genética , Proteínas de Ciclo Celular/genética , Endopeptidasa Clp/genética , Biblioteca de Genes , Redes Reguladoras de Genes , Genes Bacterianos , Peptidoglicano/biosíntesis , Peptidoglicano/genética , Ácidos Teicoicos/biosíntesis , Ácidos Teicoicos/genética
10.
Mol Microbiol ; 101(1): 12-26, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26691161

RESUMEN

Proteins belonging to the DHH family, a member of the phosphoesterase superfamily, are produced by most bacterial species. While some of these proteins are well studied in Bacillus subtilis and Escherichia coli, their functions in Streptococcus pneumoniae remain unclear. Recently, the highly conserved DHH subfamily 1 protein PapP (SP1298) has been reported to play an important role in virulence. Here, we provide a plausible explanation for the attenuated virulence of the papP mutant. Recombinant PapP specifically hydrolyzed nucleotides 3'-phosphoadenosine-5'-phosphate (pAp) and 5'-phosphoadenylyl-(3'->5')-adenosine (pApA). Deletion of papP, potentially leading to pAp/pApA accumulation, resulted in morphological defects and mis-localization of several cell division proteins. Incubation with both polar solvent and detergent led to robust killing of the papP mutant, indicating that membrane integrity is strongly affected. This is in line with previous studies showing that pAp inhibits the ACP synthase, an essential enzyme involved in lipid precursor production. Remarkably, partial inactivation of the lipid biosynthesis pathway, by inhibition of FabF or depletion of FabH, phenocopied the papP mutant. We conclude that pAp and pApA phosphatase activity of PapP is required for maintenance of membrane lipid homeostasis providing an explanation how inactivation of this protein may attenuate pneumococcal virulence.


Asunto(s)
Lípidos de la Membrana/metabolismo , Nucleótidos/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Streptococcus pneumoniae/metabolismo , Nucleótidos de Adenina/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , ARN Helicasas DEAD-box/metabolismo , Homeostasis , Mutación , Nucleótidos/genética , Monoéster Fosfórico Hidrolasas/genética , Unión Proteica , Eliminación de Secuencia , Streptococcus pneumoniae/enzimología , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/patogenicidad , Relación Estructura-Actividad , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA