Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 49(D1): D1130-D1137, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-32990755

RESUMEN

The knowledge of the genetic variability of the local population is of utmost importance in personalized medicine and has been revealed as a critical factor for the discovery of new disease variants. Here, we present the Collaborative Spanish Variability Server (CSVS), which currently contains more than 2000 genomes and exomes of unrelated Spanish individuals. This database has been generated in a collaborative crowdsourcing effort collecting sequencing data produced by local genomic projects and for other purposes. Sequences have been grouped by ICD10 upper categories. A web interface allows querying the database removing one or more ICD10 categories. In this way, aggregated counts of allele frequencies of the pseudo-control Spanish population can be obtained for diseases belonging to the category removed. Interestingly, in addition to pseudo-control studies, some population studies can be made, as, for example, prevalence of pharmacogenomic variants, etc. In addition, this genomic data has been used to define the first Spanish Genome Reference Panel (SGRP1.0) for imputation. This is the first local repository of variability entirely produced by a crowdsourcing effort and constitutes an example for future initiatives to characterize local variability worldwide. CSVS is also part of the GA4GH Beacon network. CSVS can be accessed at: http://csvs.babelomics.org/.


Asunto(s)
Colaboración de las Masas , Bases de Datos Genéticas , Genética de Población/métodos , Genoma Humano , Programas Informáticos , Alelos , Mapeo Cromosómico , Exoma , Frecuencia de los Genes , Variación Genética , Genómica , Humanos , Internet , Medicina de Precisión/métodos , España
2.
BMC Bioinformatics ; 18(1): 421, 2017 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-28931371

RESUMEN

BACKGROUND: The possibility of integrating viral vectors to become a persistent part of the host genome makes them a crucial element of clinical gene therapy. However, viral integration has associated risks, such as the unintentional activation of oncogenes that can result in cancer. Therefore, the analysis of integration sites of retroviral vectors is a crucial step in developing safer vectors for therapeutic use. RESULTS: Here we present VISMapper, a vector integration site analysis web server, to analyze next-generation sequencing data for retroviral vector integration sites. VISMapper can be found at: http://vismapper.babelomics.org . CONCLUSIONS: Because it uses novel mapping algorithms VISMapper is remarkably faster than previous available programs. It also provides a useful graphical interface to analyze the integration sites found in the genomic context.


Asunto(s)
Terapia Genética/métodos , Interfaz Usuario-Computador , Integración Viral/genética , Secuencia de Bases , Vectores Genéticos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Internet
3.
BMC Bioinformatics ; 17: 107, 2016 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-26921234

RESUMEN

BACKGROUND: The use of nanopore technologies is expected to spread in the future because they are portable and can sequence long fragments of DNA molecules without prior amplification. The first nanopore sequencer available, the MinION™ from Oxford Nanopore Technologies, is a USB-connected, portable device that allows real-time DNA analysis. In addition, other new instruments are expected to be released soon, which promise to outperform the current short-read technologies in terms of throughput. Despite the flood of data expected from this technology, the data analysis solutions currently available are only designed to manage small projects and are not scalable. RESULTS: Here we present HPG Pore, a toolkit for exploring and analysing nanopore sequencing data. HPG Pore can run on both individual computers and in the Hadoop distributed computing framework, which allows easy scale-up to manage the large amounts of data expected to result from extensive use of nanopore technologies in the future. CONCLUSIONS: HPG Pore allows for virtually unlimited sequencing data scalability, thus guaranteeing its continued management in near future scenarios. HPG Pore is available in GitHub at http://github.com/opencb/hpg-pore.


Asunto(s)
ADN/genética , Nanoporos , Análisis de Secuencia de ADN/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...